
ABLkit

unknown

Mar 28, 2024

OVERVIEW

1 Installation 3

2 References 5

Python Module Index 69

Index 71

i

ii

ABLkit

ABL is a novel paradigm that integrates machine learning and logical reasoning in a unified framework. It is suitable
for tasks where both data and (logical) domain knowledge are available.

Key Features of ABLkit:

• High Flexibility: Compatible with various machine learning modules and logical reasoning components.

• Easy-to-Use Interface: Provide data, model, and knowledge, and get started with just a few lines of code.

• Optimized Performance: Optimization for high performance and accelerated training speed.

ABLkit encapsulates advanced ABL techniques, providing users with an efficient and convenient toolkit to develop
dual-driven ABL systems, which leverage the power of both data and knowledge.

OVERVIEW 1

ABLkit

2 OVERVIEW

CHAPTER

ONE

INSTALLATION

1.1 Install from PyPI

The easiest way to install ABLkit is using pip:

pip install ablkit

1.2 Install from Source

Alternatively, to install from source code, sequentially run following commands in your terminal/command line.

git clone https://github.com/AbductiveLearning/ABLkit.git
cd ABLkit
pip install -v -e .

1.3 (Optional) Install SWI-Prolog

If the use of a Prolog-based knowledge base is necessary, the installation of SWI-Prolog is also required:

For Linux users:

sudo apt-get install swi-prolog

For Windows and Mac users, please refer to the SWI-Prolog Install Guide.

3

https://www.swi-prolog.org/
https://github.com/yuce/pyswip/blob/master/INSTALL.md

ABLkit

4 Chapter 1. Installation

CHAPTER

TWO

REFERENCES

For more information about ABL, please refer to: Zhou, 2019 and Zhou and Huang, 2022.

@article{zhou2019abductive,
title = {Abductive learning: towards bridging machine learning and logical␣

→˓reasoning},
author = {Zhou, Zhi-Hua},
journal = {Science China Information Sciences},
volume = {62},
number = {7},
pages = {76101},
year = {2019}

}

@incollection{zhou2022abductive,
title = {Abductive Learning},
author = {Zhou, Zhi-Hua and Huang, Yu-Xuan},
booktitle = {Neuro-Symbolic Artificial Intelligence: The State of the Art},
editor = {Pascal Hitzler and Md. Kamruzzaman Sarker},
publisher = {{IOS} Press},
pages = {353--369},
address = {Amsterdam},
year = {2022}

}

2.1 Abductive Learning

Traditional supervised machine learning, e.g. classification, is predominantly data-driven, as shown in the below figure.
Here, a set of data examples is given, including training instances {𝑥1, . . . , 𝑥𝑚} and corresponding ground-truth labels
{label(𝑥1), . . . , label(𝑥𝑚)}. These data are then used to train a classifier model 𝑓 , aiming to accurately predict the
unseen data instances.

5

http://scis.scichina.com/en/2019/076101.pdf
https://www.lamda.nju.edu.cn/publication/chap_ABL.pdf

ABLkit

In Abductive Learning (ABL), we assume that, in addition to data, there is also a knowledge base 𝒦ℬ containing do-
main knowledge at our disposal. We aim for the classifier 𝑓 to make correct predictions on data instances {𝑥1, . . . , 𝑥𝑚},
and meanwhile, the pseudo-groundings grounded by the prediction {𝑓(𝑥1), . . . , 𝑓(𝑥𝑚)} should be compatible with
𝒦ℬ.

The process of ABL is as follows:

1. Upon receiving data instances {𝑥1, . . . , 𝑥𝑚} as input, pseudo-labels {𝑓(𝑥1), . . . , 𝑓(𝑥𝑚)} are predicted by a
data-driven classifier model.

2. These pseudo-labels are then converted into pseudo-groundings 𝒪 that are acceptable for logical reasoning.

3. Conduct joint reasoning with 𝒦ℬ to find any inconsistencies. If found, the pseudo-groundings that lead to min-
imal inconsistency can be identified.

4. Modify the identified facts through abductive reasoning (or, abduction), returning revised pseudo-groundings
∆(𝒪) which are compatible with 𝒦ℬ.

5. These revised pseudo-groundings are converted back to the form of pseudo-labels, and used like ground-truth
labels in conventional supervised learning to train a new classifier.

6. The new classifier will then be adopted to replace the previous one in the next iteration.

This above process repeats until the classifier is no longer updated, or the pseudo-groundings 𝒪 are compatible with
the knowledge base.

The following figure illustrates this process:

6 Chapter 2. References

ABLkit

We can observe that in the above figure, the left half involves machine learning, while the right half involves logical
reasoning. Thus, the entire Abductive Learning process is a continuous cycle of machine learning and logical reasoning.
This effectively forms a paradigm that is dual-driven by both data and domain knowledge, integrating and balancing
the use of machine learning and logical reasoning in a unified model.

For more information about ABL, please refer to References.

What is Abductive Reasoning?

Abductive reasoning, also known as abduction, refers to the process of selectively inferring certain facts and hypotheses
that explain phenomena and observations based on background knowledge. Unlike deductive reasoning, which leads
to definitive conclusions, abductive reasoning may arrive at conclusions that are plausible but not conclusively proven.

In ABL, given 𝒦ℬ (typically expressed in first-order logic clauses), one can perform both deductive and abductive
reasoning. Deductive reasoning allows deriving 𝑏 from 𝑎, while abductive reasoning allows inferring 𝑎 as an explanation
of 𝑏. In other words, deductive reasoning and abductive reasoning differ in which end, right or left, of the proposition
“𝑎 |= 𝑏” serves as conclusion.

2.2 Installation

2.2.1 Install from PyPI

The easiest way to install ABLkit is using pip:

pip install ablkit

2.2. Installation 7

../References.html

ABLkit

2.2.2 Install from Source

Alternatively, to install from source code, sequentially run following commands in your terminal/command line.

git clone https://github.com/AbductiveLearning/ABLkit.git
cd ABLkit
pip install -v -e .

2.2.3 (Optional) Install SWI-Prolog

If the use of a Prolog-based knowledge base is necessary, the installation of SWI-Prolog is also required:

For Linux users:

sudo apt-get install swi-prolog

For Windows and Mac users, please refer to the SWI-Prolog Install Guide.

Learn the Basics || Quick Start || Dataset & Data Structure || Learning Part || Reasoning Part || Evaluation Metrics ||
Bridge

2.3 Learn the Basics

2.3.1 Modules in ABLkit

ABLkit is an efficient toolkit for Abductive Learning (ABL), a paradigm which integrates machine learning and logical
reasoning in a balanced-loop. ABLkit comprises three primary parts: Data, Learning, and Reasoning, corresponding
to the three pivotal components of current AI: data, models, and knowledge. Below is an overview of the ABLkit.

Data part efficiently manages data storage, operations, and evaluations. It includes the ListData class, which defines
the data structures used in ABLkit, and comprises common data operations like insertion, deletion, retrieval, slicing,
etc. Additionally, it contains a series of evaluation metrics such as SymbolAccuracy and ReasoningMetric (both
specialized metrics inherited from the BaseMetric class), for evaluating performance from a data perspective.

8 Chapter 2. References

https://www.swi-prolog.org/
https://github.com/yuce/pyswip/blob/master/INSTALL.md
Quick-Start.html
Datasets.html
Learning.html
Reasoning.html
Evaluation.html
Bridge.html
../Overview/Abductive-Learning.html

ABLkit

Learning part focuses on creating, training, and utilizing machine learning models. The ABLModel class is the central
class that encapsulates the machine learning model. This class is compatible with various frameworks, including those
based on scikit-learn or PyTorch neural networks constructed by the BasicNN class.

Reasoning part concentrates on constructing domain knowledge and performing reasoning. The KBBase class allows
users to customize a domain knowledge base. For diverse types of knowledge, we also offer implementations like
GroundKB and PrologKB (both inherited from the KBBase class). The latter, for instance, imports knowledge bases
via Prolog files. Upon building the knowledge base, the Reasoner class is responsible for minimizing the inconsistency
between the knowledge base and data.

The integration of these three parts is achieved through the Bridge part, which features the SimpleBridge class (de-
rived from the BaseBridge class). The Bridge part synthesizes data, learning, and reasoning, facilitating the training
and testing of the entire ABL framework.

2.3.2 Use ABLkit Step by Step

In a typical ABL process, as illustrated below, data inputs are first predicted by the learning model ABLModel.predict,
and the outcomes are pseudo-labels. These labels then pass through deductive reasoning of the domain knowledge base
KBBase.logic_forward to obtain the reasoning result. During training, alongside the aforementioned forward flow
(i.e., prediction –> deduction reasoning), there also exists a reverse flow, which starts from the reasoning result and
involves abductive reasoning KBBase.abduce_candidates to generate possible revised pseudo-labels. Subsequently,
these pseudo-labels are processed to minimize inconsistencies with the learning part. They in turn revise the outcomes
of the learning model, which are then fed back for further training ABLModel.train.

To implement this process, the following five steps are necessary:

1. Prepare datasets

Prepare the data’s input, ground truth for pseudo-labels (optional), and ground truth for reasoning
results.

2. Build the learning part

Build a machine learning base model that can predict inputs to pseudo-labels. Then, use ABLModel to encapsulate
the base model.

3. Build the reasoning part

Define a knowledge base by building a subclass of KBBase, specifying how to process pseudo-labels
to reasoning results. Also, create a Reasoner for minimizing inconsistencies between the knowledge
base and data.

4. Define evaluation metrics

Define the metrics by building a subclass of BaseMetric. The metrics will specify how to measure
performance during the training and testing of the ABL framework.

2.3. Learn the Basics 9

ABLkit

5. Bridge learning and reasoning

Use SimpleBridge to bridge the learning and reasoning part for integrated training and testing.

Learn the Basics || Quick Start || Dataset & Data Structure || Learning Part || Reasoning Part || Evaluation Metrics ||
Bridge

2.4 Quick Start

We use the MNIST Addition task as a quick start example. In this task, pairs of MNIST handwritten images and their
sums are given, alongwith a domain knowledge base which contains information on how to perform addition operations.
Our objective is to input a pair of handwritten images and accurately determine their sum. Refer to the links in each
section to dive deeper.

2.4.1 Working with Data

ABLkit requires data in the format of (X, gt_pseudo_label, Y) where X is a list of input examples containing
instances, gt_pseudo_label is the ground-truth label of each example in X and Y is the ground-truth reasoning result
of each example in X. Note that gt_pseudo_label is only used to evaluate the machine learning model’s performance
but not to train it.

In the MNIST Addition task, the data loading looks like

The 'datasets' module below is located in 'examples/mnist_add/'
from datasets import get_dataset

train_data and test_data are tuples in the format of (X, gt_pseudo_label, Y)
train_data = get_dataset(train=True)
test_data = get_dataset(train=False)

Read more about preparing datasets.

2.4.2 Building the Learning Part

Learning part is constructed by first defining a base model for machine learning. ABLkit offers considerable flexibility,
supporting any base model that conforms to the scikit-learn style (which requires the implementation of fit and
predict methods), or a PyTorch-based neural network (which has defined the architecture and implemented forward
method). In this example, we build a simple LeNet5 network as the base model.

The 'models' module below is located in 'examples/mnist_add/'
from models.nn import LeNet5

cls = LeNet5(num_classes=10)

To facilitate uniform processing, ABLkit provides the BasicNN class to convert a PyTorch-based neural network into
a format compatible with scikit-learn models. To construct a BasicNN instance, aside from the network itself, we also
need to define a loss function, an optimizer, and the computing device.

import torch
from ablkit.learning import BasicNN

loss_fn = torch.nn.CrossEntropyLoss()
(continues on next page)

10 Chapter 2. References

Basics.html
Datasets.html
Learning.html
Reasoning.html
Evaluation.html
Bridge.html
Datasets.html

ABLkit

(continued from previous page)

optimizer = torch.optim.RMSprop(cls.parameters(), lr=0.001)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
base_model = BasicNN(model=cls, loss_fn=loss_fn, optimizer=optimizer, device=device)

The base model built above is trained to make predictions on instance-level data (e.g., a single image), while ABL deals
with example-level data. To bridge this gap, we wrap the base_model into an instance of ABLModel. This class serves
as a unified wrapper for base models, facilitating the learning part to train, test, and predict on example-level data, (e.g.,
images that comprise an equation).

from ablkit.learning import ABLModel

model = ABLModel(base_model)

Read more about building the learning part.

2.4.3 Building the Reasoning Part

To build the reasoning part, we first define a knowledge base by creating a subclass of KBBase. In the subclass, we ini-
tialize the pseudo_label_list parameter and override the logic_forward method, which specifies how to perform
(deductive) reasoning that processes pseudo-labels of an example to the corresponding reasoning result. Specifically,
for the MNIST Addition task, this logic_forward method is tailored to execute the sum operation.

from ablkit.reasoning import KBBase

class AddKB(KBBase):
def __init__(self, pseudo_label_list=list(range(10))):

super().__init__(pseudo_label_list)

def logic_forward(self, nums):
return sum(nums)

kb = AddKB()

Next, we create a reasoner by instantiating the class Reasoner, passing the knowledge base as a parameter. Due
to the indeterminism of abductive reasoning, there could be multiple candidate pseudo-labels compatible with the
knowledge base. In such scenarios, the reasoner can minimize inconsistency and return the pseudo-label with the
highest consistency.

from ablkit.reasoning import Reasoner

reasoner = Reasoner(kb)

Read more about building the reasoning part.

2.4. Quick Start 11

Learning.html
Reasoning.html

ABLkit

2.4.4 Building Evaluation Metrics

ABLkit provides two basic metrics, namely SymbolAccuracy and ReasoningMetric, which are used to evaluate the
accuracy of the machine learning model’s predictions and the accuracy of the logic_forward results, respectively.

from ablkit.data.evaluation import ReasoningMetric, SymbolAccuracy

metric_list = [SymbolAccuracy(), ReasoningMetric(kb=kb)]

Read more about building evaluation metrics

2.4.5 Bridging Learning and Reasoning

Now, we use SimpleBridge to combine learning and reasoning in a unified ABL framework.

from ablkit.bridge import SimpleBridge

bridge = SimpleBridge(model, reasoner, metric_list)

Finally, we proceed with training and testing.

bridge.train(train_data, loops=1, segment_size=0.01)
bridge.test(test_data)

Read more about bridging machine learning and reasoning.

Learn the Basics || Quick Start || Dataset & Data Structure || Learning Part || Reasoning Part || Evaluation Metrics ||
Bridge

2.5 Dataset & Data Structure

In this section, we will look at the dataset and data structure in ABLkit.

import torch
from ablkit.data.structures import ListData

2.5.1 Dataset

ABLkit requires user data to be either structured as a tuple (X, gt_pseudo_label, Y) or a ListData (the un-
derlying data structure utilized in ABLkit, cf. the next section) object with X, gt_pseudo_label and Y attributes.
Regardless of the chosen format, the data should encompass three essential components:

• X: List[List[Any]]

A list of sublists representing the input data. We refer to each sublist in X as an example and each
example may contain several instances.

• gt_pseudo_label: List[List[Any]], optional

A list of sublists with each sublist representing ground-truth pseudo-labels of an example. Each
pseudo-label in the sublist serves as ground-truth for each instance within the example.

12 Chapter 2. References

Evaluation.html
Bridge.html
Basics.html
Quick-Start.html
Learning.html
Reasoning.html
Evaluation.html
Bridge.html

ABLkit

Note: gt_pseudo_label is only used to evaluate the performance of the learning part but not to
train the model. If the pseudo-label of the instances in the datasets are unlabeled, gt_pseudo_label
should be None.

• Y: List[Any]

A list representing the ground-truth reasoning result for each example in X.

Warning: The length of X, gt_pseudo_label (if not None) and Y should be the same. Also, each sublist in
gt_pseudo_label should have the same length as the sublist in X.

As an illustration, in the MNIST Addition task, the data are organized as follows:

where each sublist in X, e.g., , is a data example and each image in the sublist, e.g., , is an instance.

2.5.2 Data Structure

Besides the user-provided dataset, various forms of data are utilized and dynamicly generated throughout the training
and testing process of ABL framework. Examples include raw data, predicted pseudo-label, abduced pseudo-label,
pseudo-label indices, etc. To manage this diversity and ensure a stable, versatile interface, ABLkit employs abstract
data interfaces to encapsulate different forms of data that will be used in the total learning process.

ListData is the underlying abstract data interface utilized in ABLkit. As the fundamental data structure, ListData
implements commonly used data manipulation methods and is responsible for transferring data between various com-
ponents of ABL, ensuring that stages such as prediction, abductive reasoning, and training can utilize ListData as a
unified input format. Before proceeding to other stages, user-provided datasets will be firstly converted into ListData.

Besides providing a tuple of (X, gt_pseudo_label, Y), ABLkit also allows users to directly supply data in
ListData format, which similarly requires the inclusion of these three attributes. The following code shows the basic
usage of ListData. More information can be found in the API documentation.

Prepare data
X = [list(torch.randn(3, 28, 28)), list(torch.randn(3, 28, 28))]
gt_pseudo_label = [[1, 2, 3], [4, 5, 6]]
Y = [1, 2]

Convert data into ListData
data = ListData(X=X, Y=Y, gt_pseudo_label=gt_pseudo_label)

Get data
X = data.X
Y = data.Y
gt_pseudo_label = data.gt_pseudo_label

Set data
(continues on next page)

2.5. Dataset & Data Structure 13

../API/ablkit.data.html#structures
../API/ablkit.data.html#structures
../API/ablkit.data.html#structures

ABLkit

(continued from previous page)

data.X = X
data.Y = Y
data.gt_pseudo_label = gt_pseudo_label

Learn the Basics || Quick Start || Dataset & Data Structure || Learning Part || Reasoning Part || Evaluation Metrics ||
Bridge

2.6 Learning Part

In this section, we will look at how to build the learning part.

In ABLkit, building the learning part involves two steps:

1. Build a machine learning base model used to make predictions on instance-level data.

2. Instantiate an ABLModel with the base model, which enables the learning part to process example-level data.

import sklearn
import torchvision
from ablkit.learning import BasicNN, ABLModel

2.6.1 Building a base model

ABL toolkit allows the base model to be one of the following forms:

1. Any machine learning model conforming to the scikit-learn style, i.e., models which has implemented the fit
and predict methods;

2. A PyTorch-based neural network, provided it has defined the architecture and implemented the forwardmethod.

For a scikit-learn model, we can directly use the model itself as a base model. For example, we can customize our base
model by a KNN classfier:

base_model = sklearn.neighbors.KNeighborsClassifier(n_neighbors=3)

For a PyTorch-based neural network, we need to encapsulate it within a BasicNN object to create a base model. For
example, we can customize our base model by a pre-trained ResNet-18:

Load a PyTorch-based neural network
cls = torchvision.models.resnet18(pretrained=True)

loss function and optimizer are used for training
loss_fn = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(cls.parameters())

base_model = BasicNN(cls, loss_fn, optimizer)

14 Chapter 2. References

Basics.html
Quick-Start.html
Datasets.html
Reasoning.html
Evaluation.html
Bridge.html

ABLkit

BasicNN

BasicNN is a wrapper class for PyTorch-based neural networks, which enables them to work as scikit-learn models. It
encapsulates the neural network, loss function, optimizer, and other elements into a single object, which can be used
as a base model.

Besides the necessary methods required to instantiate an ABLModel, i.e., fit and predict, BasicNN also implements
the following methods:

Method Function
train_epoch(data_loader) Train the neural network for one epoch.
predict_proba(X) Predict the class probabilities of X.
score(X, y) Calculate the accuracy of the model on test data.
save(epoch_id, save_path) Save the model.
load(load_path) Load the model.

2.6.2 Instantiating an ABLModel

Typically, base model is trained to make predictions on instance-level data, and can not directly process example-level
data, which is not suitable for most neural-symbolic tasks. ABLkit provides the ABLModel to solve this problem. This
class serves as a unified wrapper for all base models, which enables the learning part to train, test, and predict on
example-level data.

Generally, we can simply instantiate an ABLModel by:

Instantiate an ABLModel
model = ABLModel(base_model)

Learn the Basics || Quick Start || Dataset & Data Structure || Learning Part || Reasoning Part || Evaluation Metrics ||
Bridge

2.7 Reasoning part

In this section, we will look at how to build the reasoning part, which leverages domain knowledge and performs
deductive or abductive reasoning. In ABLkit, building the reasoning part involves two steps:

1. Build a knowledge base by creating a subclass of KBBase, which specifies how to process pseudo-label of an
example to the reasoning result.

2. Create a reasoner by instantiating the class Reasoner to minimize inconsistencies between the knowledge base
and pseudo labels predicted by the learning part.

from ablkit.reasoning import KBBase, GroundKB, PrologKB, Reasoner

2.7. Reasoning part 15

Basics.html
Quick-Start.html
Datasets.html
Learning.html
Evaluation.html
Bridge.html

ABLkit

2.7.1 Building a knowledge base

Generally, we can create a subclass derived from KBBase to build our own knowledge base. In addition, ABLkit also
offers several predefined subclasses of KBBase (e.g., PrologKB and GroundKB), which we can utilize to build our
knowledge base more conveniently.

Building a knowledge base from KBBase

For the user-built KB from KBBase (a derived subclass), it’s only required to pass the pseudo_label_list parameter
in the __init__ method and override the logic_forward method:

• pseudo_label_list is the list of possible pseudo-labels (also, the output of the machine learning model).

• logic_forward defines how to perform (deductive) reasoning, i.e. matching each example’s pseudo-labels to
its reasoning result.

Note: Generally, the overridden method logic_forward provided by the user accepts only one parameter,
pseudo_label (pseudo-labels of an example). However, for certain scenarios, deductive reasoning in the knowledge
base may necessitate information from the input. In these scenarios, logic_forward can also accept two parameters:
pseudo_label and x. See examples in Zoo.

After that, other operations, including how to perform abductive reasoning, will be automatically set up.

MNIST Addition example

As an example, the pseudo_label_list passed in MNIST Addition is all the possible digits, namely, [0,1,2,...,
9], and the logic_forward should be: “Add the two pseudo-labels to get the result.”. Therefore, the construction of
the KB (add_kb) for MNIST Addition would be:

class AddKB(KBBase):
def __init__(self, pseudo_label_list=list(range(10))):

super().__init__(pseudo_label_list)

def logic_forward(self, pseudo_labels):
return sum(pseudo_labels)

add_kb = AddKB()

and (deductive) reasoning in add_kb would be:

pseudo_labels = [1, 2]
reasoning_result = add_kb.logic_forward(pseudo_labels)
print(f"Reasoning result of pseudo-labels {pseudo_labels} is {reasoning_result}.")

Out:

Reasoning result of pseudo-labels [1, 2] is 3

16 Chapter 2. References

../Examples/Zoo.html

ABLkit

Other optional parameters

We can also pass the following parameters in the __init__ method when building our knowledge base:

• max_err (float, optional), specifying the upper tolerance limit when comparing the similarity between the rea-
soning result of pseudo-labels and the ground truth during abductive reasoning. This is only applicable when the
reasoning result is of a numerical type. This is particularly relevant for regression problems where exact matches
might not be feasible. Defaults to 1e-10. See an example.

• use_cache (bool, optional), indicating whether to use cache to store previous candidates (pseudo-labels gener-
ated from abductive reasoning) to speed up subsequent abductive reasoning operations. Defaults to True. For
more information of abductive reasoning, please refer to this.

• cache_size (int, optional), specifying the maximum cache size. This is only operational when use_cache is
set to True. Defaults to 4096.

Building a knowledge base from Prolog file

When aiming to leverage knowledge base from an external Prolog file (which contains how to perform reasoning),
we can directly create an instance of class PrologKB. Upon instantiation of PrologKB, we are required to pass the
pseudo_label_list (same as KBBase) and pl_file (the Prolog file) in the __init__ method.

What is a Prolog file?

A Prolog file (typically have the extension .pl) is a script or source code file written in the Prolog language. Prolog
is a logic programming language where the logic is represented as facts (basic assertions about some world) and rules
(logical statements that describe the relationships between facts). A computation is initiated by running a query over
these facts and rules. See some Prolog examples in SWISH.

After the instantiation, other operations, including how to perform abductive reasoning, will also be automatically set
up.

Warning: Note that to use the default logic forward and abductive reasoning methods in this class, the Prolog (.pl)
file should contain a rule with a strict format: logic_forward(Pseudo_labels, Res). Otherwise, we might
have to override logic_forward and get_query_string to allow for more adaptable usage.

MNIST Addition example (cont.)

As an example, we can first write a Prolog file for the MNIST Addition example as the following code, and then save
it as add.pl.

pseudo_label(N) :- between(0, 9, N).
logic_forward([Z1, Z2], Res) :- pseudo_label(Z1), pseudo_label(Z2), Res is Z1+Z2.

Afterwards, the construction of knowledge base from Prolog file (add_prolog_kb) would be as follows:

add_prolog_kb = PrologKB(pseudo_label_list=list(range(10)), pl_file="add.pl")

2.7. Reasoning part 17

https://swish.swi-prolog.org/

ABLkit

Building a knowledge base with GKB from GroundKB

We can also inherit from class GroundKB to build our own knowledge base. In this way, the knowledge built will have
a Ground KB (GKB).

What is Ground KB?

Ground KB is a knowledge base prebuilt upon class initialization, storing all potential candidates along with their
respective reasoning result. The key advantage of having a Ground KB is that it may accelerate abductive reasoning.

GroundKB is a subclass of GKBBase. Similar to KBBase, we are required to pass the pseudo_label_list parameter
in the __init__ method and override the logic_forward method, and are allowed to pass other optional parameters.
Additionally, we are required pass the GKB_len_list parameter in the __init__ method.

• GKB_len_list is the list of possible lengths for pseudo-labels of an example.

After that, other operations, including auto-construction of GKB, and how to perform abductive reasoning, will be
automatically set up.

MNIST Addition example (cont.)

As an example, the GKB_len_list for MNIST Addition should be [2], since all pseudo-labels in the example consist
of two digits. Therefore, the construction of KB with GKB (add_ground_kb) of MNIST Addition would be as follows.
As mentioned, the difference between this and the previously built add_kb lies only in the base class from which it is
derived and whether an extra parameter GKB_len_list is passed.

class AddGroundKB(GroundKB):
def __init__(self, pseudo_label_list=list(range(10)),

GKB_len_list=[2]):
super().__init__(pseudo_label_list, GKB_len_list)

def logic_forward(self, nums):
return sum(nums)

add_ground_kb = AddGroundKB()

Performing abductive reasoning in the knowledge base

As mentioned in What is Abductive Reasoning?, abductive reasoning enables the inference of candidates (i.e., possible
pseudo-labels) as potential explanations for the reasoning result. Also, in Abductive Learning where an observation
(pseudo-labels of an example predicted by the learning part) is available, we aim to let the candidate do not largely
revise the previously identified pseudo-labels.

KBBase (also, GroundKB and PrologKB) implement the method abduce_candidates(pseudo_label, y, x,
max_revision_num, require_more_revision) for performing abductive reasoning, where the parameters are:

• pseudo_label, pseudo-labels of an example, usually generated by the learning part. They are to be revised by
abductive reasoning.

• y, the ground truth of the reasoning result for the example. The returned candidates should be compatible with
it.

• x, the corresponding input example. If the information from the input
is not required in the reasoning process, then this parameter will not have any effect.

18 Chapter 2. References

https://www.ijcai.org/proceedings/2021/250

ABLkit

• max_revision_num, an int value specifying the upper limit on the number of revised labels for each example.

• require_more_revision, an int value specifying additional number of revisions permitted beyond the mini-
mum required. (e.g., If we set it to 0, even if max_revision_num is set to a high value, the method will only
output candidates with the minimum possible revisions.)

And it returns a list of candidates (i.e., revised pseudo-labels of the example) that are all compatible with y.

MNIST Addition example (cont.)

As an example, with MNIST Addition, the candidates returned by add_kb.abduce_candidates would be as follows:

pseudo_label y max_revision_num require_more_address Output
[1,1] 8 1 0 [[1,7], [7,1]]
[1,1] 8 1 1 [[1,7], [7,1]]
[1,1] 8 2 0 [[1,7], [7,1]]
[1,1] 8 2 1 [[1,7], [7,1], [2,6], [6,2], [3,5], [5,3],

[4,4]]
[1,1] 11 1 0 []

As another example, if we set the max_err of AddKB to be 1 instead of the default 1e-10, the tolerance limit for
consistency will be higher, hence the candidates returned would be:

pseudo_label y max_revision_num require_more_address Output
[1,1] 8 1 0 [[1,7], [7,1], [1,6], [6,1], [1,8], [8,1]]
[1,1] 11 1 0 [[1,9], [9,1]]

2.7.2 Creating a reasoner

After building our knowledge base, the next step is creating a reasoner. Due to the indeterminism of abductive reasoning,
there could be multiple candidates compatible with the knowledge base. When this happens, reasoner can minimize
inconsistencies between the knowledge base and pseudo-labels predicted by the learning part, and then return only one
candidate that has the highest consistency.

We can create a reasoner simply by instantiating class Reasoner and passing our knowledge base as a parameter. As
an example for MNIST Addition, the reasoner definition would be:

reasoner_add = Reasoner(kb_add)

When instantiating, besides the required knowledge base, we may also specify:

• max_revision (int or float, optional), specifies the upper limit on the number of revisions for each example
when performing abductive reasoning in the knowledge base. If float, denotes the fraction of the total length that
can be revised. A value of -1 implies no restriction on the number of revisions. Defaults to -1.

• require_more_revision (int, optional), Specifies additional number of revisions permitted beyond the mini-
mum required when performing abductive reasoning in the knowledge base. Defaults to 0.

• use_zoopt (bool, optional), indicating whether to use the ZOOpt library, which is a library for zeroth-order
optimization that can be used to accelerate consistency minimization. Defaults to False.

• dist_func (str, optional), specifying the distance function to be used when determining consistency between
your prediction and candidate returned from knowledge base. This can be either a user-defined function or
one that is predefined. Valid predefined options include “hamming”, “confidence” and “avg_confidence”. For

2.7. Reasoning part 19

https://github.com/polixir/ZOOpt

ABLkit

“hamming”, it directly calculates the Hamming distance between the predicted pseudo-label in the data example
and candidate. For “confidence”, it calculates the confidence distance between the predicted probabilities in
the data example and each candidate, where the confidence distance is defined as 1 - the product of prediction
probabilities in “confidence” and 1 - the average of prediction probabilities in “avg_confidence”. Defaults to
“confidence”.

• idx_to_label (dict, optional), a mapping from index in the base model to label.
If not provided, a default order-based index to label mapping is created. Defaults to None.

The main method implemented by Reasoner is abduce(data_example), which obtains the most consistent candidate
based on the distance function defined in dist_func.

MNIST Addition example (cont.)

As an example, consider these data examples for MNIST Addition:

favor "1" for the first label
prob1 = [[0, 0.99, 0, 0, 0, 0, 0, 0.01, 0, 0],

[0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]]

favor "7" for the first label
prob2 = [[0, 0.01, 0, 0, 0, 0, 0, 0.99, 0, 0],

[0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]]

example1 = ListData()
example1.pred_pseudo_label = [1, 1]
example1.pred_prob = prob1
example1.Y = 8

example2 = ListData()
example2.pred_pseudo_label = [1, 1]
example2.pred_prob = prob2
example2.Y = 8

The compatible candidates after abductive reasoning for both examples would be [[1,7], [7,1]]. However, when
the reasoner calls abduce to select only one candidate based on the “confidence” distance function, the output would
differ for each example:

reasoner_add = Reasoner(kb_add, dist_func="confidence")
candidate1 = reasoner_add.abduce(example1)
candidate2 = reasoner_add.abduce(example2)
print(f"The outputs for example1 and example2 are {candidate1} and {candidate2},␣
→˓respectively.")

Out:

The outputs for example1 and example2 are [1,7] and [7,1], respectively.

Specifically, as mentioned before, “confidence” calculates the distance between the data example and candidates based
on the confidence derived from the predicted probability. Take example1 as an example, the pred_prob in it indicates
a higher confidence that the first label should be “1” rather than “7”. Therefore, among the candidates [1,7] and [7,1],
it would be closer to [1,7] (as its first label is “1”).

Learn the Basics || Quick Start || Dataset & Data Structure || Learning Part || Reasoning Part || Evaluation Metrics ||
Bridge

20 Chapter 2. References

Basics.html
Quick-Start.html
Datasets.html
Learning.html
Reasoning.html
Bridge.html

ABLkit

2.8 Evaluation Metrics

In this section, we will look at how to build evaluation metrics.

from ablkit.data.evaluation import BaseMetric, SymbolAccuracy, ReasoningMetric

ABLkit seperates the evaluation process from model training and testing as an independent class, BaseMetric. The
training and testing processes are implemented in the BaseBridge class, so metrics are used by this class and its sub-
classes. After building a bridgewith a list of BaseMetric instances, these metrics will be used by the bridge.valid
method to evaluate the model performance during training and testing.

To customize our own metrics, we need to inherit from BaseMetric and implement the process and
compute_metrics methods.

• The process method accepts a batch of model prediction and saves the information to self.results property
after processing this batch.

• The compute_metrics method uses all the information saved in self.results to calculate and return a dict
that holds the evaluation results.

Besides, we can assign a str to the prefix argument of the __init__ function. This string is automatically pre-
fixed to the output metric names. For example, if we set prefix="mnist_add", the output metric name will be
character_accuracy. We provide two basic metrics, namely SymbolAccuracy and ReasoningMetric, which are
used to evaluate the accuracy of the machine learning model’s predictions and the accuracy of the final reasoning
results, respectively. Using SymbolAccuracy as an example, the following code shows how to implement a custom
metric.

class SymbolAccuracy(BaseMetric):
def __init__(self, prefix: Optional[str] = None) -> None:

prefix is used to distinguish different metrics
super().__init__(prefix)

def process(self, data_examples: Sequence[dict]) -> None:
pred_pseudo_label and gt_pseudo_label are both of type List[List[Any]]
and have the same length
pred_pseudo_label = data_examples.pred_pseudo_label
gt_pseudo_label = data_examples.gt_pseudo_label

for pred_z, z in zip(pred_pseudo_label, gt_pseudo_label):
correct_num = 0
for pred_symbol, symbol in zip(pred_z, z):

if pred_symbol == symbol:
correct_num += 1

self.results.append(correct_num / len(z))

def compute_metrics(self, results: list) -> dict:
metrics = dict()
metrics["character_accuracy"] = sum(results) / len(results)
return metrics

Learn the Basics || Quick Start || Dataset & Data Structure || Learning Part || Reasoning Part || Evaluation Metrics ||
Bridge

2.8. Evaluation Metrics 21

Basics.html
Quick-Start.html
Datasets.html
Learning.html
Reasoning.html
Evaluation.html

ABLkit

2.9 Bridge

In this section, we will look at how to bridge learning and reasoning parts to train the model, which is the fundamental
idea of Abductive Learning. ABLkit implements a set of bridge classes to achieve this.

from ablkit.bridge import BaseBridge, SimpleBridge

BaseBridge is an abstract class with the following initialization parameters:

• model is an object of type ABLModel. The learning part is wrapped in this object.

• reasoner is an object of type Reasoner. The reasoning part is wrapped in this object.

BaseBridge has the following important methods that need to be overridden in subclasses:

Method Signature Description
predict(data_examples) Predicts class probabilities and indices for the given data examples.
abduce_pseudo_label(data_examples)Abduces pseudo-labels for the given data examples.
idx_to_pseudo_label(data_examples)Converts indices to pseudo-labels using the provided or default map-

ping.
pseudo_label_to_idx(data_examples)Converts pseudo-labels to indices using the provided or default remap-

ping.
train(train_data) Train the model.
test(test_data) Test the model.

where train_data and test_data are both in the form of a tuple or a ListData. Regardless of the form, they all
need to include three components: X, gt_pseudo_label and Y. Since ListData is the underlying data structure used
throughout the ABLkit, tuple-formed data will be firstly transformed into ListData in the train and test methods,
and such ListData instances are referred to as data_examples. More details can be found in preparing datasets.

SimpleBridge inherits from BaseBridge and provides a basic implementation. Besides the model and reasoner,
SimpleBridge has an extra initialization argument, metric_list, which will be used to evaluate model performance.
Its training process involves several Abductive Learning loops and each loop consists of the following five steps:

1. Predict class probabilities and indices for the given data examples.

2. Transform indices into pseudo-labels.

3. Revise pseudo-labels based on abdutive reasoning.

4. Transform the revised pseudo-labels to indices.

5. Train the model.

The fundamental part of the train method is as follows:

def train(self, train_data, loops=50, segment_size=10000):
"""
Parameters

train_data : Union[ListData, Tuple[List[List[Any]], Optional[List[List[Any]]],␣

→˓List[Any]]]
Training data should be in the form of ``(X, gt_pseudo_label, Y)`` or a ``ListData``
object with ``X``, ``gt_pseudo_label`` and ``Y`` attributes.
- ``X`` is a list of sublists representing the input data.
- ``gt_pseudo_label`` is only used to evaluate the performance of the ``ABLModel``␣

→˓but not
(continues on next page)

22 Chapter 2. References

../API/ablkit.data.html#structures.ListData
Datasets.html

ABLkit

(continued from previous page)

to train. ``gt_pseudo_label`` can be ``None``.
- ``Y`` is a list representing the ground truth reasoning result for each sublist␣

→˓in ``X``.
loops : int

Learning part and Reasoning part will be iteratively optimized for ``loops``␣
→˓times.
segment_size : Union[int, float]

Data will be split into segments of this size and data in each segment
will be used together to train the model.

"""
if isinstance(train_data, ListData):

data_examples = train_data
else:

data_examples = self.data_preprocess(*train_data)

if isinstance(segment_size, float):
segment_size = int(segment_size * len(data_examples))

for loop in range(loops):
for seg_idx in range((len(data_examples) - 1) // segment_size + 1):

sub_data_examples = data_examples[
seg_idx * segment_size : (seg_idx + 1) * segment_size

]
self.predict(sub_data_examples) # 1
self.idx_to_pseudo_label(sub_data_examples) # 2
self.abduce_pseudo_label(sub_data_examples) # 3
self.pseudo_label_to_idx(sub_data_examples) # 4
loss = self.model.train(sub_data_examples) # 5, self.model is an␣

→˓ABLModel object

2.10 MNIST Addition

Below shows an implementation of MNIST Addition. In this task, pairs of MNIST handwritten images and their sums
are given, alongwith a domain knowledge base containing information on how to perform addition operations. The
task is to recognize the digits of handwritten images and accurately determine their sum.

Intuitively, we first use a machine learning model (learning part) to convert the input images to digits (we call them
pseudo-labels), and then use the knowledge base (reasoning part) to calculate the sum of these digits. Since we do not
have ground-truth of the digits, in Abductive Learning, the reasoning part will leverage domain knowledge and revise
the initial digits yielded by the learning part through abductive reasoning. This process enables us to further update
the machine learning model.

Import necessary libraries and modules
import os.path as osp

import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from torch.optim import RMSprop, lr_scheduler

(continues on next page)

2.10. MNIST Addition 23

https://arxiv.org/abs/1805.10872

ABLkit

(continued from previous page)

from ablkit.bridge import SimpleBridge
from ablkit.data.evaluation import ReasoningMetric, SymbolAccuracy
from ablkit.learning import ABLModel, BasicNN
from ablkit.reasoning import KBBase, Reasoner
from ablkit.utils import ABLLogger, print_log

from datasets import get_dataset
from models.nn import LeNet5

2.10.1 Working with Data

First, we get the training and testing datasets:

train_data = get_dataset(train=True, get_pseudo_label=True)
test_data = get_dataset(train=False, get_pseudo_label=True)

train_data and test_data share identical structures: tuples with three components: X (list where each element is
a list of two images), gt_pseudo_label (list where each element is a list of two digits, i.e., pseudo-labels) and Y (list
where each element is the sum of the two digits). The length and structures of datasets are illustrated as follows.

Note: gt_pseudo_label is only used to evaluate the performance of the learning part but not to train the model.

print(f"Both train_data and test_data consist of 3 components: X, gt_pseudo_label, Y")
print("\n")
train_X, train_gt_pseudo_label, train_Y = train_data
print(f"Length of X, gt_pseudo_label, Y in train_data: " +

f"{len(train_X)}, {len(train_gt_pseudo_label)}, {len(train_Y)}")
test_X, test_gt_pseudo_label, test_Y = test_data
print(f"Length of X, gt_pseudo_label, Y in test_data: " +

f"{len(test_X)}, {len(test_gt_pseudo_label)}, {len(test_Y)}")
print("\n")

X_0, gt_pseudo_label_0, Y_0 = train_X[0], train_gt_pseudo_label[0], train_Y[0]
print(f"X is a {type(train_X).__name__}, " +

f"with each element being a {type(X_0).__name__} " +
f"of {len(X_0)} {type(X_0[0]).__name__}.")

print(f"gt_pseudo_label is a {type(train_gt_pseudo_label).__name__}, " +
f"with each element being a {type(gt_pseudo_label_0).__name__} " +
f"of {len(gt_pseudo_label_0)} {type(gt_pseudo_label_0[0]).__name__}.")

print(f"Y is a {type(train_Y).__name__}, " +
f"with each element being an {type(Y_0).__name__}.")

Out:

Both train_data and test_data consist of 3 components: X, gt_pseudo_label, Y

Length of X, gt_pseudo_label, Y in train_data: 30000, 30000, 30000
Length of X, gt_pseudo_label, Y in test_data: 5000, 5000, 5000

X is a list, with each element being a list of 2 Tensor.
(continues on next page)

24 Chapter 2. References

ABLkit

(continued from previous page)

gt_pseudo_label is a list, with each element being a list of 2 int.
Y is a list, with each element being an int.

The ith element of X, gt_pseudo_label, and Y together constitute the ith data example. As an illustration, in the first
data example of the training set, we have:

X_0, gt_pseudo_label_0, Y_0 = train_X[0], train_gt_pseudo_label[0], train_Y[0]
print(f"X in the first data example (a list of two images):")
plt.subplot(1,2,1)
plt.axis('off')
plt.imshow(X_0[0].squeeze(), cmap='gray')
plt.subplot(1,2,2)
plt.axis('off')
plt.imshow(X_0[1].squeeze(), cmap='gray')
plt.show()
print(f"gt_pseudo_label in the first data example (a list of two ground truth pseudo-
→˓labels): {gt_pseudo_label_0}")
print(f"Y in the first data example (their sum result): {Y_0}")

Out:

X in the first data example (a list of two images):

gt_pseudo_label in the first data example (a list of two ground truth pseudo-
→˓labels): [7, 5]
Y in the first data example (their sum result): 12

2.10.2 Building the Learning Part

To build the learning part, we need to first build a machine learning base model. We use a simple LeNet-5 neural
network, and encapsulate it within a BasicNN object to create the base model. BasicNN is a class that encapsulates a
PyTorch model, transforming it into a base model with a sklearn-style interface.

cls = LeNet5(num_classes=10)
loss_fn = nn.CrossEntropyLoss(label_smoothing=0.1)
optimizer = RMSprop(cls.parameters(), lr=0.001, alpha=0.9)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
scheduler = lr_scheduler.OneCycleLR(optimizer, max_lr=0.001, pct_start=0.1, total_
→˓steps=100)

base_model = BasicNN(
cls,
loss_fn,
optimizer,

(continues on next page)

2.10. MNIST Addition 25

https://en.wikipedia.org/wiki/LeNet
https://en.wikipedia.org/wiki/LeNet

ABLkit

(continued from previous page)

scheduler=scheduler,
device=device,
batch_size=32,
num_epochs=1,

)

BasicNN offers methods like predict and predict_proba, which are used to predict the class index and the proba-
bilities of each class for images. As shown below:

data_instances = [torch.randn(1, 28, 28) for _ in range(32)]
pred_idx = base_model.predict(X=data_instances)
print(f"Predicted class index for a batch of 32 instances: np.ndarray with shape {pred_
→˓idx.shape}")
pred_prob = base_model.predict_proba(X=data_instances)
print(f"Predicted class probabilities for a batch of 32 instances: np.ndarray with shape
→˓{pred_prob.shape}")

Out:

Predicted class index for a batch of 32 instances: np.ndarray with shape (32,)
Predicted class probabilities for a batch of 32 instances: np.ndarray with shape␣
→˓(32, 10)

However, the base model built above deals with instance-level data (i.e., individual images), and can not directly deal
with example-level data (i.e., a pair of images). Therefore, we wrap the base model into ABLModel, which enables the
learning part to train, test, and predict on example-level data.

model = ABLModel(base_model)

As an illustration, consider this example of training on example-level data using the predict method in ABLModel. In
this process, the method accepts data examples as input and outputs the class labels and the probabilities of each class
for all instances within these data examples.

from ablkit.data.structures import ListData
ListData is a data structure provided by ABLkit that can be used to organize data␣
→˓examples
data_examples = ListData()
We use the first 100 data examples in the training set as an illustration
data_examples.X = train_X[:100]
data_examples.gt_pseudo_label = train_gt_pseudo_label[:100]
data_examples.Y = train_Y[:100]

Perform prediction on the 100 data examples
pred_label, pred_prob = model.predict(data_examples)['label'], model.predict(data_
→˓examples)['prob']
print(f"Predicted class labels for the 100 data examples: \n" +

f"a list of length {len(pred_label)}, and each element is " +
f"a {type(pred_label[0]).__name__} of shape {pred_label[0].shape}.\n")

print(f"Predicted class probabilities for the 100 data examples: \n" +
f"a list of length {len(pred_prob)}, and each element is " +
f"a {type(pred_prob[0]).__name__} of shape {pred_prob[0].shape}.")

Out:

26 Chapter 2. References

ABLkit

Predicted class labels for the 100 data examples:
a list of length 100, and each element is a ndarray of shape (2,).

Predicted class probabilities for the 100 data examples:
a list of length 100, and each element is a ndarray of shape (2, 10).

2.10.3 Building the Reasoning Part

In the reasoning part, we first build a knowledge base which contains information on how to perform addition opera-
tions. We build it by creating a subclass of KBBase. In the derived subclass, we initialize the pseudo_label_list
parameter specifying list of possible pseudo-labels, and override the logic_forward function defining how to perform
(deductive) reasoning.

class AddKB(KBBase):
def __init__(self, pseudo_label_list=list(range(10))):

super().__init__(pseudo_label_list)

Implement the deduction function
def logic_forward(self, nums):

return sum(nums)

kb = AddKB()

The knowledge base can perform logical reasoning (both deductive reasoning and abductive reasoning). Below is an
example of performing (deductive) reasoning, and users can refer to Performing abductive reasoning in the knowledge
base for details of abductive reasoning.

pseudo_labels = [1, 2]
reasoning_result = kb.logic_forward(pseudo_labels)
print(f"Reasoning result of pseudo-labels {pseudo_labels} is {reasoning_result}.")

Out:

Reasoning result of pseudo-labels [1, 2] is 3.

Note: In addition to building a knowledge base based on KBBase, we can also establish a knowledge base with a ground
KB using GroundKB, or a knowledge base implemented based on Prolog files using PrologKB. The corresponding code
for these implementations can be found in the main.py file. Those interested are encouraged to examine it for further
insights.

Then, we create a reasoner by instantiating the class Reasoner. Due to the indeterminism of abductive reasoning,
there could be multiple candidates compatible with the knowledge base. When this happens, reasoner can minimize
inconsistencies between the knowledge base and pseudo-labels predicted by the learning part, and then return only one
candidate that has the highest consistency.

reasoner = Reasoner(kb)

Note: During creating reasoner, the definition of “consistency” can be customized within the dist_func parame-
ter. In the code above, we employ a consistency measurement based on confidence, which calculates the consistency
between the data example and candidates based on the confidence derived from the predicted probability. In examples/
mnist_add/main.py, we provide options for utilizing other forms of consistency measurement.

2.10. MNIST Addition 27

ABLkit

Also, during the process of inconsistency minimization, we can leverage ZOOpt library for acceleration. Options for
this are also available in examples/mnist_add/main.py. Those interested are encouraged to explore these features.

2.10.4 Building Evaluation Metrics

Next, we set up evaluation metrics. These metrics will be used to evaluate the model performance during training and
testing. Specifically, we use SymbolAccuracy and ReasoningMetric, which are used to evaluate the accuracy of the
machine learning model’s predictions and the accuracy of the final reasoning results, respectively.

metric_list = [SymbolAccuracy(prefix="mnist_add"), ReasoningMetric(kb=kb, prefix="mnist_
→˓add")]

2.10.5 Bridging Learning and Reasoning

Now, the last step is to bridge the learning and reasoning part. We proceed with this step by creating an instance of
SimpleBridge.

bridge = SimpleBridge(model, reasoner, metric_list)

Perform training and testing by invoking the train and test methods of SimpleBridge.

Build logger
print_log("Abductive Learning on the MNIST Addition example.", logger="current")
log_dir = ABLLogger.get_current_instance().log_dir
weights_dir = osp.join(log_dir, "weights")

bridge.train(train_data, loops=1, segment_size=0.01, save_interval=1, save_dir=weights_
→˓dir)
bridge.test(test_data)

The log will appear similar to the following:

Log:

abl - INFO - Abductive Learning on the MNIST Addition example.
abl - INFO - Working with Data.
abl - INFO - Building the Learning Part.
abl - INFO - Building the Reasoning Part.
abl - INFO - Building Evaluation Metrics.
abl - INFO - Bridge Learning and Reasoning.
abl - INFO - loop(train) [1/2] segment(train) [1/100]
abl - INFO - model loss: 2.25980
abl - INFO - loop(train) [1/2] segment(train) [2/100]
abl - INFO - model loss: 2.14168
abl - INFO - loop(train) [1/2] segment(train) [3/100]
abl - INFO - model loss: 2.02010
...
abl - INFO - loop(train) [2/2] segment(train) [1/100]
abl - INFO - model loss: 0.90260
...
abl - INFO - Eval start: loop(val) [2]

(continues on next page)

28 Chapter 2. References

https://github.com/polixir/ZOOpt

ABLkit

(continued from previous page)

abl - INFO - Evaluation ended, mnist_add/character_accuracy: 0.993 mnist_add/
→˓reasoning_accuracy: 0.986
abl - INFO - Test start:
abl - INFO - Evaluation ended, mnist_add/character_accuracy: 0.991 mnist_add/
→˓reasoning_accuracy: 0.980

2.10.6 Environment

For all experiments, we used a single linux server. Details on the specifications are listed in the table below.

2.10.7 Performance

We present the results of ABL as follows, which include the reasoning accuracy (the proportion of equations that are
correctly summed), and the training time used to achieve this accuracy. These results are compared with the following
methods:

• NeurASP: An extension of answer set programs by treating the neural network output as the probability distri-
bution over atomic facts;

• DeepProbLog: An extension of ProbLog by introducing neural predicates in Probabilistic Logic Programming;

• LTN: A neural-symbolic framework that uses differentiable first-order logic language to incorporate data and
logic;

• DeepStochLog: A neural-symbolic framework based on stochastic logic program.

2.11 Handwritten Formula (HWF)

Below shows an implementation of Handwritten Formula. In this task, handwritten images of decimal formulas and
their computed results are given, alongwith a domain knowledge base containing information on how to compute the
decimal formula. The task is to recognize the symbols (which can be digits or operators ‘+’, ‘-’, ‘×’, ‘÷’) of handwritten
images and accurately determine their results.

Intuitively, we first use a machine learning model (learning part) to convert the input images to symbols (we call them
pseudo-labels), and then use the knowledge base (reasoning part) to calculate the results of these symbols. Since we do
not have ground-truth of the symbols, in Abductive Learning, the reasoning part will leverage domain knowledge and
revise the initial symbols yielded by the learning part through abductive reasoning. This process enables us to further
update the machine learning model.

Import necessary libraries and modules
import os.path as osp

import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn

from ablkit.bridge import SimpleBridge
from ablkit.data.evaluation import ReasoningMetric, SymbolAccuracy
from ablkit.learning import ABLModel, BasicNN
from ablkit.reasoning import KBBase, Reasoner

(continues on next page)

2.11. Handwritten Formula (HWF) 29

https://github.com/azreasoners/NeurASP
https://github.com/ML-KULeuven/deepproblog
https://github.com/logictensornetworks/logictensornetworks
https://github.com/ML-KULeuven/deepstochlog
https://arxiv.org/abs/2006.06649

ABLkit

(continued from previous page)

from ablkit.utils import ABLLogger, print_log

from datasets import get_dataset
from models.nn import SymbolNet

2.11.1 Working with Data

First, we get the training and testing datasets:

train_data = get_dataset(train=True, get_pseudo_label=True)
test_data = get_dataset(train=False, get_pseudo_label=True)

Both train_data and test_data have the same structures: tuples with three components: X (list where each element
is a list of images), gt_pseudo_label (list where each element is a list of symbols, i.e., pseudo-labels) and Y (list where
each element is the computed result). The length and structures of datasets are illustrated as follows.

Note: gt_pseudo_label is only used to evaluate the performance of the learning part but not to train the model.

print(f"Both train_data and test_data consist of 3 components: X, gt_pseudo_label, Y")
print()
train_X, train_gt_pseudo_label, train_Y = train_data
print(f"Length of X, gt_pseudo_label, Y in train_data: " +

f"{len(train_X)}, {len(train_gt_pseudo_label)}, {len(train_Y)}")
test_X, test_gt_pseudo_label, test_Y = test_data
print(f"Length of X, gt_pseudo_label, Y in test_data: " +

f"{len(test_X)}, {len(test_gt_pseudo_label)}, {len(test_Y)}")
print()

X_0, gt_pseudo_label_0, Y_0 = train_X[0], train_gt_pseudo_label[0], train_Y[0]
print(f"X is a {type(train_X).__name__}, " +

f"with each element being a {type(X_0).__name__} of {type(X_0[0]).__name__}.")
print(f"gt_pseudo_label is a {type(train_gt_pseudo_label).__name__}, " +

f"with each element being a {type(gt_pseudo_label_0).__name__} " +
f"of {type(gt_pseudo_label_0[0]).__name__}.")

print(f"Y is a {type(train_Y).__name__}, " +
f"with each element being an {type(Y_0).__name__}.")

Out:

Both train_data and test_data consist of 3 components: X, gt_pseudo_label, Y

Length of X, gt_pseudo_label, Y in train_data: 10000, 10000, 10000
Length of X, gt_pseudo_label, Y in test_data: 2000, 2000, 2000

X is a list, with each element being a list of Tensor.
gt_pseudo_label is a list, with each element being a list of str.
Y is a list, with each element being an int.

The ith element of X, gt_pseudo_label, and Y together constitute the ith data example. Here we use two of them (the
1001st and the 3001st) as illstrations:

30 Chapter 2. References

ABLkit

X_1000, gt_pseudo_label_1000, Y_1000 = train_X[1000], train_gt_pseudo_label[1000], train_
→˓Y[1000]
print(f"X in the 1001st data example (a list of images):")
for i, x in enumerate(X_1000):

plt.subplot(1, len(X_1000), i+1)
plt.axis('off')
plt.imshow(x.squeeze(), cmap='gray')

plt.show()
print(f"gt_pseudo_label in the 1001st data example (a list of ground truth pseudo-
→˓labels): {gt_pseudo_label_1000}")
print(f"Y in the 1001st data example (the computed result): {Y_1000}")
print()
X_3000, gt_pseudo_label_3000, Y_3000 = train_X[3000], train_gt_pseudo_label[3000], train_
→˓Y[3000]
print(f"X in the 3001st data example (a list of images):")
for i, x in enumerate(X_3000):

plt.subplot(1, len(X_3000), i+1)
plt.axis('off')
plt.imshow(x.squeeze(), cmap='gray')

plt.show()
print(f"gt_pseudo_label in the 3001st data example (a list of ground truth pseudo-
→˓labels): {gt_pseudo_label_3000}")
print(f"Y in the 3001st data example (the computed result): {Y_3000}")

Out:

X in the 1001st data example (a list of images):

gt_pseudo_label in the 1001st data example (a list of pseudo-labels): ['5', '-', '3
→˓']
Y in the 1001st data example (the computed result): 2

X in the 3001st data example (a list of images):

gt_pseudo_label in the 3001st data example (a list of pseudo-labels): ['4', '/', '6
→˓', '*', '5']
Y in the 3001st data example (the computed result): 3.333333333333333

Note: The symbols in the HWF dataset can be one of digits or operators ‘+’, ‘-’, ‘×’, ‘÷’.

We may see that, in the 1001st data example, the length of the formula is 3, while in the 3001st data example, the length
of the formula is 5. In the HWF dataset, the lengths of the formulas are 1, 3, 5, and 7 (Specifically, 10% of the equations

2.11. Handwritten Formula (HWF) 31

ABLkit

have a length of 1, 10% have a length of 3, 20% have a length of 5, and 60% have a length of 7).

2.11.2 Building the Learning Part

To build the learning part, we need to first build a machine learning base model. We use SymbolNet, and encapsulate it
within a BasicNN object to create the base model. BasicNN is a class that encapsulates a PyTorch model, transforming
it into a base model with an sklearn-style interface.

class of symbol may be one of ['1', ..., '9', '+', '-', '*', '/'], total of 14 classes
cls = SymbolNet(num_classes=13, image_size=(45, 45, 1))
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(cls.parameters(), lr=0.001, betas=(0.9, 0.99))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

base_model = BasicNN(
model=cls,
loss_fn=loss_fn,
optimizer=optimizer,
device=device,
batch_size=128,
num_epochs=3,

)

BasicNN offers methods like predict and predict_proba, which are used to predict the class index and the proba-
bilities of each class for images. As shown below:

data_instances = [torch.randn(1, 45, 45) for _ in range(32)]
pred_idx = base_model.predict(X=data_instances)
print(f"Predicted class index for a batch of 32 instances: " +

f"{type(pred_idx).__name__} with shape {pred_idx.shape}")
pred_prob = base_model.predict_proba(X=data_instances)
print(f"Predicted class probabilities for a batch of 32 instances: " +

f"{type(pred_prob).__name__} with shape {pred_prob.shape}")

Out:

Predicted class index for a batch of 32 instances: ndarray with shape (32,)
Predicted class probabilities for a batch of 32 instances: ndarray with shape (32,␣
→˓14)

However, the base model built above deals with instance-level data (i.e., individual images), and can not directly
deal with example-level data (i.e., a list of images comprising the formula). Therefore, we wrap the base model into
ABLModel, which enables the learning part to train, test, and predict on example-level data.

model = ABLModel(base_model)

As an illustration, consider this example of training on example-level data using the predict method in ABLModel. In
this process, the method accepts data examples as input and outputs the class labels and the probabilities of each class
for all instances within these data examples.

from ablkit.data.structures import ListData
ListData is a data structure provided by ABLkit that can be used to organize data␣

(continues on next page)

32 Chapter 2. References

ABLkit

(continued from previous page)

→˓examples
data_examples = ListData()
We use the first 1001st and 3001st data examples in the training set as an illustration
data_examples.X = [X_1000, X_3000]
data_examples.gt_pseudo_label = [gt_pseudo_label_1000, gt_pseudo_label_3000]
data_examples.Y = [Y_1000, Y_3000]

Perform prediction on the two data examples
Remind that, in the 1001st data example, the length of the formula is 3,
while in the 3001st data example, the length of the formula is 5.
pred_label, pred_prob = model.predict(data_examples)['label'], model.predict(data_
→˓examples)['prob']
print(f"Predicted class labels for the 100 data examples: a list of length {len(pred_
→˓label)}, \n" +

f"the first element is a {type(pred_label[0]).__name__} of shape {pred_label[0].
→˓shape}, "+

f"and the second element is a {type(pred_label[1]).__name__} of shape {pred_
→˓label[1].shape}.\n")
print(f"Predicted class probabilities for the 100 data examples: a list of length
→˓{len(pred_prob)}, \n"

f"the first element is a {type(pred_prob[0]).__name__} of shape {pred_prob[0].
→˓shape}, " +

f"and the second element is a {type(pred_prob[1]).__name__} of shape {pred_prob[1].
→˓shape}.")

Out:

Predicted class labels for the 100 data examples: a list of length 2,
the first element is a ndarray of shape (3,), and the second element is a ndarray␣
→˓of shape (5,).

Predicted class probabilities for the 100 data examples: a list of length 2,
the first element is a ndarray of shape (3, 14), and the second element is a␣
→˓ndarray of shape (5, 14).

2.11.3 Building the Reasoning Part

In the reasoning part, we first build a knowledge base which contains information on how to compute a formula. We
build it by creating a subclass of KBBase. In the derived subclass, we initialize the pseudo_label_list parameter
specifying list of possible pseudo-labels, and override the logic_forward function defining how to perform (deduc-
tive) reasoning.

class HwfKB(KBBase):
def __init__(self, pseudo_label_list=["1", "2", "3", "4", "5", "6", "7", "8", "9", "+

→˓", "-", "*", "/"]):
super().__init__(pseudo_label_list)

def _valid_candidate(self, formula):
if len(formula) % 2 == 0:

return False
for i in range(len(formula)):

(continues on next page)

2.11. Handwritten Formula (HWF) 33

ABLkit

(continued from previous page)

if i % 2 == 0 and formula[i] not in ["1", "2", "3", "4", "5", "6", "7", "8",
→˓"9"]:

return False
if i % 2 != 0 and formula[i] not in ["+", "-", "*", "/"]:

return False
return True

Implement the deduction function
def logic_forward(self, formula):

if not self._valid_candidate(formula):
return np.inf

return eval("".join(formula))

kb = HwfKB()

The knowledge base can perform logical reasoning (both deductive reasoning and abductive reasoning). Below is an
example of performing (deductive) reasoning, and users can refer to Performing abductive reasoning in the knowledge
base for details of abductive reasoning.

pseudo_labels = ["1", "-", "2", "*", "5"]
reasoning_result = kb.logic_forward(pseudo_labels)
print(f"Reasoning result of pseudo-labels {pseudo_labels} is {reasoning_result}.")

Out:

Reasoning result of pseudo-labels ['1', '-', '2', '*', '5'] is -9.

Note: In addition to building a knowledge base based on KBBase, we can also establish a knowledge base with a ground
KB using GroundKB. The corresponding code can be found in the examples/hwf/main.py file. Those interested are
encouraged to examine it for further insights.

Also, when building the knowledge base, we can also set the max_err parameter during initialization, which is shown
in the examples/hwf/main.py file. This parameter specifies the upper tolerance limit when comparing the similarity
between the reasoning result of pseudo-labels and the ground truth during abductive reasoning, with a default value of
1e-10.

Then, we create a reasoner by instantiating the class Reasoner. Due to the indeterminism of abductive reasoning,
there could be multiple candidates compatible with the knowledge base. When this happens, reasoner can minimize
inconsistencies between the knowledge base and pseudo-labels predicted by the learning part, and then return only one
candidate that has the highest consistency.

reasoner = Reasoner(kb)

Note: During creating reasoner, the definition of “consistency” can be customized within the dist_func parameter. In
the code above, we employ a consistency measurement based on confidence, which calculates the consistency between
the data example and candidates based on the confidence derived from the predicted probability. In examples/hwf/
main.py, we provide options for utilizing other forms of consistency measurement.

Also, during the process of inconsistency minimization, we can leverage ZOOpt library for acceleration. Options for
this are also available in examples/hwf/main.py. Those interested are encouraged to explore these features.

34 Chapter 2. References

https://github.com/polixir/ZOOpt

ABLkit

2.11.4 Building Evaluation Metrics

Next, we set up evaluation metrics. These metrics will be used to evaluate the model performance during training and
testing. Specifically, we use SymbolAccuracy and ReasoningMetric, which are used to evaluate the accuracy of the
machine learning model’s predictions and the accuracy of the final reasoning results, respectively.

metric_list = [SymbolAccuracy(prefix="hwf"), ReasoningMetric(kb=kb, prefix="hwf")]

2.11.5 Bridging Learning and Reasoning

Now, the last step is to bridge the learning and reasoning part. We proceed with this step by creating an instance of
SimpleBridge.

bridge = SimpleBridge(model, reasoner, metric_list)

Perform training and testing by invoking the train and test methods of SimpleBridge.

Build logger
print_log("Abductive Learning on the HWF example.", logger="current")
log_dir = ABLLogger.get_current_instance().log_dir
weights_dir = osp.join(log_dir, "weights")

bridge.train(train_data, loops=3, segment_size=1000, save_dir=weights_dir)
bridge.test(test_data)

The log will appear similar to the following:

Log:

abl - INFO - Abductive Learning on the HWF example.
abl - INFO - loop(train) [1/3] segment(train) [1/10]
abl - INFO - model loss: 0.00024
abl - INFO - loop(train) [1/3] segment(train) [2/10]
abl - INFO - model loss: 0.00011
abl - INFO - loop(train) [1/3] segment(train) [3/10]
abl - INFO - model loss: 0.00332
...
abl - INFO - Eval start: loop(val) [1]
abl - INFO - Evaluation ended, hwf/character_accuracy: 0.997 hwf/reasoning_
→˓accuracy: 0.985
abl - INFO - loop(train) [2/3] segment(train) [1/10]
abl - INFO - model loss: 0.00126
...
abl - INFO - Eval start: loop(val) [2]
abl - INFO - Evaluation ended, hwf/character_accuracy: 0.998 hwf/reasoning_
→˓accuracy: 0.989
abl - INFO - loop(train) [3/3] segment(train) [1/10]
abl - INFO - model loss: 0.00030
...
abl - INFO - Eval start: loop(val) [3]
abl - INFO - Evaluation ended, hwf/character_accuracy: 0.999 hwf/reasoning_
→˓accuracy: 0.996
abl - INFO - Test start:

(continues on next page)

2.11. Handwritten Formula (HWF) 35

ABLkit

(continued from previous page)

abl - INFO - Evaluation ended, hwf/character_accuracy: 0.997 hwf/reasoning_
→˓accuracy: 0.986

2.11.6 Environment

For all experiments, we used a single linux server. Details on the specifications are listed in the table below.

2.11.7 Performance

We present the results of ABL as follows, which include the reasoning accuracy (for different equation lengths in the
HWF dataset), training time (to achieve the accuracy using all equation lengths), and average memory usage (using all
equation lengths). These results are compared with the following methods:

• NGS: A neural-symbolic framework that uses a grammar model and a back-search algorithm to improve its
computing process;

• DeepProbLog: An extension of ProbLog by introducing neural predicates in Probabilistic Logic Programming;

• DeepStochLog: A neural-symbolic framework based on stochastic logic program.

2.12 Handwritten Equation Decipherment (HED)

Below shows an implementation of Handwritten Equation Decipherment. In this task, the handwritten equations are
given, which consist of sequential pictures of characters. The equations are generated with unknown operation rules
from images of symbols (‘0’, ‘1’, ‘+’ and ‘=’), and each equation is associated with a label indicating whether the
equation is correct (i.e., positive) or not (i.e., negative). Also, we are given a knowledge base which involves the
structure of the equations and a recursive definition of bit-wise operations. The task is to learn from a training set of
above-mentioned equations and then to predict labels of unseen equations.

Intuitively, we first use a machine learning model (learning part) to obtain the pseudo-labels (‘0’, ‘1’, ‘+’ and ‘=’) for
the observed pictures. We then use the knowledge base (reasoning part) to perform abductive reasoning so as to yield
ground hypotheses as possible explanations to the observed facts, suggesting some pseudo-labels to be revised. This
process enables us to further update the machine learning model.

Import necessary libraries and modules
import os.path as osp

import matplotlib.pyplot as plt
import torch
import torch.nn as nn

from ablkit.learning import ABLModel, BasicNN
from ablkit.utils import ABLLogger, print_log

from bridge import HedBridge
from consistency_metric import ConsistencyMetric
from datasets import get_dataset, split_equation
from models.nn import SymbolNet
from reasoning import HedKB, HedReasoner

36 Chapter 2. References

https://github.com/liqing-ustc/NGS
https://github.com/ML-KULeuven/deepproblog/tree/master
https://github.com/ML-KULeuven/deepstochlog/tree/main
https://proceedings.neurips.cc/paper_files/paper/2019/file/9c19a2aa1d84e04b0bd4bc888792bd1e-Paper.pdf

ABLkit

2.12.1 Working with Data

First, we get the datasets of handwritten equations:

total_train_data = get_dataset(train=True)
train_data, val_data = split_equation(total_train_data, 3, 1)
test_data = get_dataset(train=False)

The datasets are shown below:

true_train_equation = train_data[1]
false_train_equation = train_data[0]
print(f"Equations in the dataset is organized by equation length, " +

f"from {min(train_data[0].keys())} to {max(train_data[0].keys())}.")
print()

true_train_equation_with_length_5 = true_train_equation[5]
false_train_equation_with_length_5 = false_train_equation[5]
print(f"For each eqaation length, there are {len(true_train_equation_with_length_5)} " +

f"true equations and {len(false_train_equation_with_length_5)} false equations " +
f"in the training set.")

true_val_equation = val_data[1]
false_val_equation = val_data[0]
true_val_equation_with_length_5 = true_val_equation[5]
false_val_equation_with_length_5 = false_val_equation[5]
print(f"For each equation length, there are {len(true_val_equation_with_length_5)} " +

f"true equations and {len(false_val_equation_with_length_5)} false equations " +
f"in the validation set.")

true_test_equation = test_data[1]
false_test_equation = test_data[0]
true_test_equation_with_length_5 = true_test_equation[5]
false_test_equation_with_length_5 = false_test_equation[5]
print(f"For each equation length, there are {len(true_test_equation_with_length_5)} " +

f"true equations and {len(false_test_equation_with_length_5)} false equations " +
f"in the test set.")

Out:

Equations in the dataset is organized by equation length, from 5 to 26.

For each equation length, there are 225 true equations and 225 false equations in␣
→˓the training set.
For each equation length, there are 75 true equations and 75 false equations in the␣
→˓validation set.
For each equation length, there are 300 true equations and 300 false equations in␣
→˓the test set.

As illustrations, we show four equations in the training dataset:

true_train_equation_with_length_5 = true_train_equation[5]
true_train_equation_with_length_8 = true_train_equation[8]
print(f"First true equation with length 5 in the training dataset:")

(continues on next page)

2.12. Handwritten Equation Decipherment (HED) 37

ABLkit

(continued from previous page)

for i, x in enumerate(true_train_equation_with_length_5[0]):
plt.subplot(1, 5, i+1)
plt.axis('off')
plt.imshow(x.squeeze(), cmap='gray')

plt.show()
print(f"First true equation with length 8 in the training dataset:")
for i, x in enumerate(true_train_equation_with_length_8[0]):

plt.subplot(1, 8, i+1)
plt.axis('off')
plt.imshow(x.squeeze(), cmap='gray')

plt.show()

false_train_equation_with_length_5 = false_train_equation[5]
false_train_equation_with_length_8 = false_train_equation[8]
print(f"First false equation with length 5 in the training dataset:")
for i, x in enumerate(false_train_equation_with_length_5[0]):

plt.subplot(1, 5, i+1)
plt.axis('off')
plt.imshow(x.squeeze(), cmap='gray')

plt.show()
print(f"First false equation with length 8 in the training dataset:")
for i, x in enumerate(false_train_equation_with_length_8[0]):

plt.subplot(1, 8, i+1)
plt.axis('off')
plt.imshow(x.squeeze(), cmap='gray')

plt.show()

Out:

First true equation with length 5 in the training dataset:

First true equation with length 8 in the training dataset:

First false equation with length 5 in the training dataset:

First false equation with length 8 in the training dataset:

38 Chapter 2. References

ABLkit

2.12.2 Building the Learning Part

To build the learning part, we need to first build a machine learning base model. We use SymbolNet, and encapsulate it
within a BasicNN object to create the base model. BasicNN is a class that encapsulates a PyTorch model, transforming
it into a base model with an sklearn-style interface.

class of symbol may be one of ['0', '1', '+', '='], total of 4 classes
cls = SymbolNet(num_classes=4)
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.RMSprop(cls.parameters(), lr=0.001, weight_decay=1e-4)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

base_model = BasicNN(
cls,
loss_fn,
optimizer,
device=device,
batch_size=32,
num_epochs=1,
stop_loss=None,

)

However, the base model built above deals with instance-level data (i.e., individual images), and can not directly deal
with example-level data (i.e., a list of images comprising the equation). Therefore, we wrap the base model into
ABLModel, which enables the learning part to train, test, and predict on example-level data.

model = ABLModel(base_model)

2.12.3 Building the Reasoning Part

In the reasoning part, we first build a knowledge base. As mentioned before, the knowledge base in this task involves the
structure of the equations and a recursive definition of bit-wise operations, which are defined in Prolog file examples/
hed/reasoning/BK.pl and examples/hed/reasoning/learn_add.pl, respectively. Specifically, the knowledge
about the structure of equations is a set of DCG rules recursively define that a digit is a sequence of ‘0’ and ‘1’, and
equations share the structure of X+Y=Z, though the length of X, Y and Z can be varied. The knowledge about bit-wise
operations is a recursive logic program, which reversely calculates X+Y, i.e., it operates on X and Y digit-by-digit and
from the last digit to the first.

The knowledge base is already built in HedKB. HedKB is derived from class PrologKB, and is built upon the aformen-
tioned Prolog files.

kb = HedKB()

Note: Please notice that, the specific rules for calculating the operations are undefined in the knowledge base, i.e.,
results of ‘0+0’, ‘0+1’ and ‘1+1’ could be ‘0’, ‘1’, ‘00’, ‘01’ or even ‘10’. The missing calculation rules are required to

2.12. Handwritten Equation Decipherment (HED) 39

ABLkit

be learned from the data. Therefore, HedKB incorporates methods for abducing rules from data. Users interested can
refer to the specific implementation of HedKB in examples/hed/reasoning/reasoning.py

Then, we create a reasoner. Due to the indeterminism of abductive reasoning, there could be multiple candidates
compatible with the knowledge base. When this happens, reasoner can minimize inconsistencies between the knowl-
edge base and pseudo-labels predicted by the learning part, and then return only one candidate that has the highest
consistency.

In this task, we create the reasoner by instantiating the class HedReasoner, which is a reasoner derived from Reasoner
and tailored specifically for this task. HedReasoner leverages ZOOpt library for acceleration, and has designed a
specific strategy to better harness ZOOpt’s capabilities. Additionally, methods for abducing rules from data have been
incorporated. Users interested can refer to the specific implementation of HedReasoner in reasoning/reasoning.
py.

reasoner = HedReasoner(kb, dist_func="hamming", use_zoopt=True, max_revision=10)

2.12.4 Building Evaluation Metrics

Next, we set up evaluation metrics. These metrics will be used to evaluate the model performance during training and
testing. Specifically, we use SymbolAccuracy and ReasoningMetric, which are used to evaluate the accuracy of the
machine learning model’s predictions and the accuracy of the final reasoning results, respectively.

Set up metrics
metric_list = [SymbolAccuracy(prefix="hed"), ReasoningMetric(kb=kb, prefix="hed")]

2.12.5 Bridging Learning and Reasoning

Now, the last step is to bridge the learning and reasoning part. We proceed with this step by creating an instance of
HedBridge, which is derived from SimpleBridge and tailored specific for this task.

bridge = HedBridge(model, reasoner, metric_list)

Perform pretraining, training and testing by invoking the pretrain, train and test methods of HedBridge.

Build logger
print_log("Abductive Learning on the HED example.", logger="current")

Retrieve the directory of the Log file and define the directory for saving the model␣
→˓weights.
log_dir = ABLLogger.get_current_instance().log_dir
weights_dir = osp.join(log_dir, "weights")

bridge.pretrain("./weights")
bridge.train(train_data, val_data, save_dir=weights_dir)
bridge.test(test_data)

40 Chapter 2. References

https://github.com/polixir/ZOOpt

ABLkit

2.13 Zoo

Below shows an implementation of Zoo dataset. In this task, attributes of animals (such as presence of hair, eggs, etc.)
and their targets (the animal class they belong to) are given, along with a knowledge base which contains information
about the relations between attributes and targets, e.g., Implies(milk == 1, mammal == 1).

The goal of this task is to develop a learning model that can predict the targets of animals based on their attributes. In
the initial stages, when the model is under-trained, it may produce incorrect predictions that conflict with the relations
contained in the knowledge base. When this happens, abductive reasoning can be employed to adjust these results and
retrain the model accordingly. This process enables us to further update the learning model.

Import necessary libraries and modules
import os.path as osp

import numpy as np
from sklearn.ensemble import RandomForestClassifier

from ablkit.bridge import SimpleBridge
from ablkit.data.evaluation import ReasoningMetric, SymbolAccuracy
from ablkit.learning import ABLModel
from ablkit.reasoning import Reasoner
from ablkit.utils import ABLLogger, confidence_dist, print_log, tab_data_to_tuple

from get_dataset import load_and_preprocess_dataset, split_dataset
from kb import ZooKB

2.13.1 Working with Data

First, we load and preprocess the Zoo dataset, and split it into labeled/unlabeled/test data

X, y = load_and_preprocess_dataset(dataset_id=62)
X_label, y_label, X_unlabel, y_unlabel, X_test, y_test = split_dataset(X, y, test_size=0.
→˓3)

Zoo dataset consists of tabular data. The attributes contain 17 boolean values (e.g., hair, feathers, eggs, milk, airborne,
aquatic, etc.) and the target is an integer value in the range [0,6] representing 7 classes (e.g., mammal, bird, reptile,
fish, amphibian, insect, and other). Below is an illustration:

print("Shape of X and y:", X.shape, y.shape)
print("First five elements of X:")
print(X[:5])
print("First five elements of y:")
print(y[:5])

Out:

Shape of X and y: (101, 16) (101,)
First five elements of X:
[[True False False True False False True True True True False False 4
False False True]
[True False False True False False False True True True False False 4
True False True]

(continues on next page)

2.13. Zoo 41

https://archive.ics.uci.edu/dataset/111/zoo
https://archive.ics.uci.edu/dataset/111/zoo

ABLkit

(continued from previous page)

[False False True False False True True True True False False True 0
True False False]
[True False False True False False True True True True False False 4
False False True]
[True False False True False False True True True True False False 4
True False True]]
First five elements of y:
[0 0 3 0 0]

Next, we transform the tabular data to the format required by ABLkit, which is a tuple of (X, gt_pseudo_label, Y). In
this task, we treat the attributes as X and the targets as gt_pseudo_label (ground truth pseudo-labels). Y (reasoning
results) are expected to be 0, indicating no rules are violated.

label_data = tab_data_to_tuple(X_label, y_label, reasoning_result = 0)
data = tab_data_to_tuple(X_test, y_test, reasoning_result = 0)
train_data = tab_data_to_tuple(X_unlabel, y_unlabel, reasoning_result = 0)

2.13.2 Building the Learning Part

To build the learning part, we need to first build a machine learning base model. We use a Random Forest as the base
model.

base_model = RandomForestClassifier()

However, the base model built above deals with instance-level data, and can not directly deal with example-level data.
Therefore, we wrap the base model into ABLModel, which enables the learning part to train, test, and predict on example-
level data.

model = ABLModel(base_model)

2.13.3 Building the Reasoning Part

In the reasoning part, we first build a knowledge base which contains information about the relations between attributes
(X) and targets (pseudo-labels), e.g., Implies(milk == 1, mammal == 1). The knowledge base is built in the ZooKB
class within file examples/zoo/kb.py, and is derived from the KBBase class.

kb = ZooKB()

As mentioned, for all attributes and targets in the dataset, the reasoning results are expected to be 0 since there should
be no violations of the established knowledge in real data. As shown below:

for idx, (x, y_item) in enumerate(zip(X[:5], y[:5])):
print(f"Example {idx}: the attributes are: {x}, and the target is {y_item}.")
print(f"Reasoning result is {kb.logic_forward([y_item], [x])}.")
print()

Out:

Example 0: the attributes are: [True False False True False False True True True␣
→˓True False False 4 False

(continues on next page)

42 Chapter 2. References

https://en.wikipedia.org/wiki/Random_forest

ABLkit

(continued from previous page)

False True], and the target is 0.
Reasoning result is 0.

Example 1: the attributes are: [True False False True False False False True True␣
→˓True False False 4 True
False True], and the target is 0.
Reasoning result is 0.

Example 2: the attributes are: [False False True False False True True True True␣
→˓False False True 0 True
False False], and the target is 3.
Reasoning result is 0.

Example 3: the attributes are: [True False False True False False True True True␣
→˓True False False 4 False
False True], and the target is 0.
Reasoning result is 0.

Example 4: the attributes are: [True False False True False False True True True␣
→˓True False False 4 True
False True], and the target is 0.
Reasoning result is 0.

Then, we create a reasoner by instantiating the class Reasoner. Due to the indeterminism of abductive reasoning,
there could be multiple candidates compatible with the knowledge base. When this happens, reasoner can minimize
inconsistencies between the knowledge base and pseudo-labels predicted by the learning part, and then return only one
candidate that has the highest consistency.

def consitency(data_example, candidates, candidate_idxs, reasoning_results):
pred_prob = data_example.pred_prob
model_scores = confidence_dist(pred_prob, candidate_idxs)
rule_scores = np.array(reasoning_results)
scores = model_scores + rule_scores
return scores

reasoner = Reasoner(kb, dist_func=consitency)

2.13.4 Building Evaluation Metrics

Next, we set up evaluation metrics. These metrics will be used to evaluate the model performance during training and
testing. Specifically, we use SymbolAccuracy and ReasoningMetric, which are used to evaluate the accuracy of the
machine learning model’s predictions and the accuracy of the final reasoning results, respectively.

metric_list = [SymbolAccuracy(prefix="zoo"), ReasoningMetric(kb=kb, prefix="zoo")]

2.13. Zoo 43

ABLkit

2.13.5 Bridging Learning and Reasoning

Now, the last step is to bridge the learning and reasoning part. We proceed with this step by creating an instance of
SimpleBridge.

bridge = SimpleBridge(model, reasoner, metric_list)

Perform training and testing by invoking the train and test methods of SimpleBridge.

Build logger
print_log("Abductive Learning on the Zoo example.", logger="current")
log_dir = ABLLogger.get_current_instance().log_dir
weights_dir = osp.join(log_dir, "weights")

print_log("------- Use labeled data to pretrain the model -----------", logger="current")
base_model.fit(X_label, y_label)
print_log("------- Test the initial model -----------", logger="current")
bridge.test(test_data)
print_log("------- Use ABL to train the model -----------", logger="current")
bridge.train(train_data=train_data, label_data=label_data, loops=3, segment_size=len(X_
→˓unlabel), save_dir=weights_dir)
print_log("------- Test the final model -----------", logger="current")
bridge.test(test_data)

The log will appear similar to the following:

Log:

abl - INFO - Abductive Learning on the ZOO example.
abl - INFO - ------- Use labeled data to pretrain the model -----------
abl - INFO - ------- Test the initial model -----------
abl - INFO - Evaluation ended, zoo/character_accuracy: 0.903 zoo/reasoning_
→˓accuracy: 0.903
abl - INFO - ------- Use ABL to train the model -----------
abl - INFO - loop(train) [1/3] segment(train) [1/1]
abl - INFO - Evaluation start: loop(val) [1]
abl - INFO - Evaluation ended, zoo/character_accuracy: 1.000 zoo/reasoning_
→˓accuracy: 1.000
abl - INFO - loop(train) [2/3] segment(train) [1/1]
abl - INFO - Evaluation start: loop(val) [2]
abl - INFO - Evaluation ended, zoo/character_accuracy: 1.000 zoo/reasoning_
→˓accuracy: 1.000
abl - INFO - loop(train) [3/3] segment(train) [1/1]
abl - INFO - Evaluation start: loop(val) [3]
abl - INFO - Evaluation ended, zoo/character_accuracy: 1.000 zoo/reasoning_
→˓accuracy: 1.000
abl - INFO - ------- Test the final model -----------
abl - INFO - Evaluation ended, zoo/character_accuracy: 0.968 zoo/reasoning_
→˓accuracy: 0.968

We may see from the results, after undergoing training with ABL, the model’s accuracy has improved.

44 Chapter 2. References

ABLkit

2.14 ablkit.data

2.14.1 structures

class ablkit.data.structures.ListData(*, metainfo: Optional[dict] = None, **kwargs)
Bases: BaseDataElement

Abstract Data Interface used throughout the ABLkit.

ListData is the underlying data structure used in the ABLkit, designed to manage diverse forms of data dy-
namically generated throughout the Abductive Learning (ABL) framework. This includes handling raw data,
predicted pseudo-labels, abduced pseudo-labels, pseudo-label indices, etc.

As a fundamental data structure in ABL, ListData is essential for the smooth transfer and manipulation of data
across various components of the ABL framework, such as prediction, abductive reasoning, and training phases.
It provides a unified data format across these stages, ensuring compatibility and flexibility in handling diverse
data forms in the ABL framework.

The attributes in ListData are divided into two parts, the metainfo and the data respectively.

• metainfo: Usually used to store basic information about data examples, such as symbol number, image
size, etc. The attributes can be accessed or modified by dict-like or object-like operations, such as . (for
data access and modification), in, del, pop(str), get(str), metainfo_keys(), metainfo_values(),
metainfo_items(), set_metainfo() (for set or change key-value pairs in metainfo).

• data: raw data, labels, predictions, and abduced results are stored. The attributes can be accessed or mod-
ified by dict-like or object-like operations, such as ., in, del, pop(str), get(str), keys(), values(),
items(). Users can also apply tensor-like methods to all torch.Tensor in the data_fields, such as
.cuda(), .cpu(), .numpy(), .to(), to_tensor(), .detach().

ListData supports index and slice for data field. The type of value in data field can be either None or list of
base data structures such as torch.Tensor, numpy.ndarray, list, str and tuple.

This design is inspired by and extends the functionalities of the BaseDataElement class implemented in
MMEngine.

Examples

>>> from ablkit.data.structures import ListData
>>> import numpy as np
>>> import torch
>>> data_examples = ListData()
>>> data_examples.X = [list(torch.randn(2)) for _ in range(3)]
>>> data_examples.Y = [1, 2, 3]
>>> data_examples.gt_pseudo_label = [[1, 2], [3, 4], [5, 6]]
>>> len(data_examples)
3
>>> print(data_examples)
<ListData(

META INFORMATION
DATA FIELDS
Y: [1, 2, 3]
gt_pseudo_label: [[1, 2], [3, 4], [5, 6]]
X: [[tensor(1.1949), tensor(-0.9378)], [tensor(0.7414), tensor(0.7603)],␣

→˓[tensor(1.0587), tensor(1.9697)]]
(continues on next page)

2.14. ablkit.data 45

https://github.com/open-mmlab/mmengine/blob/main/mmengine/structures/base_data_element.py

ABLkit

(continued from previous page)

) at 0x7f3bbf1991c0>
>>> print(data_examples[:1])
<ListData(

META INFORMATION
DATA FIELDS
Y: [1]
gt_pseudo_label: [[1, 2]]
X: [[tensor(1.1949), tensor(-0.9378)]]

) at 0x7f3bbf1a3580>
>>> print(data_examples.elements_num("X"))
6
>>> print(data_examples.flatten("gt_pseudo_label"))
[1, 2, 3, 4, 5, 6]
>>> print(data_examples.to_tuple("Y"))
(1, 2, 3)

elements_num(item: str)→ int
Return the number of elements in the attribute specified by item.

Parameters
item (str) – Name of the attribute for which the number of elements is to be determined.

Returns
The number of elements in the attribute specified by item.

Return type
int

flatten(item: str)→ List
Flatten the list of the attribute specified by item.

Parameters
item – Name of the attribute to be flattened.

Returns
The flattened list of the attribute specified by item.

Return type
list

to_tuple(item: str)→ tuple
Convert the attribute specified by item to a tuple.

Parameters
item (str) – Name of the attribute to be converted.

Returns
The attribute after conversion to a tuple.

Return type
tuple

46 Chapter 2. References

ABLkit

2.14.2 evaluation

class ablkit.data.evaluation.BaseMetric(prefix: Optional[str] = None)
Bases: object

Base class for a metrics.

The metrics first processes each batch of data_examples and appends the processed results to the results list.
Then, it computes the metrics of the entire dataset.

Parameters
prefix (str, optional) – The prefix that will be added in the metrics names to disam-
biguate homonymous metrics of different tasks. If prefix is not provided in the argument,
self.default_prefix will be used instead. Defaults to None.

abstract compute_metrics()→ dict
Compute the metrics from processed results.

Returns
The computed metrics. The keys are the names of the metrics, and the values are the corre-
sponding results.

Return type
dict

evaluate()→ dict
Evaluate the model performance of the whole dataset after processing all batches.

Returns
Evaluation metrics dict on the val dataset. The keys are the names of the metrics, and the
values are the corresponding results.

Return type
dict

abstract process(data_examples: ListData)→ None
Process one batch of data examples. The processed results should be stored in self.results, which will
be used to compute the metrics when all batches have been processed.

Parameters
data_examples (ListData) – A batch of data examples.

class ablkit.data.evaluation.ReasoningMetric(kb: KBBase, prefix: Optional[str] = None)
Bases: BaseMetric

A metrics class for evaluating the model performance on tasks that need reasoning.

This class is designed to calculate the accuracy of the reasoing results. Reasoning results are generated by
first using the learning part to predict pseudo-labels and then using a knowledge base (KB) to perform logical
reasoning. The reasoning results are then compared with the ground truth to calculate the accuracy.

Parameters

• kb (KBBase) – An instance of a knowledge base, used for logical reasoning and validation.
If not provided, reasoning checks are not performed. Defaults to None.

• prefix (str, optional) – The prefix that will be added to the metrics names to disam-
biguate homonymous metrics of different tasks. Inherits from BaseMetric. Defaults to None.

2.14. ablkit.data 47

ABLkit

Notes

The ReasoningMetric expects data_examples to have the attributes pred_pseudo_label, Y, and X, corresponding
to the predicted pseduo labels, ground truth of reasoning results, and input data, respectively.

compute_metrics()→ dict
Compute the reasoning accuracy metrics from self.results. It calculates the percentage of correctly
reasoned examples over all examples.

Returns
A dictionary containing the computed metrics. It includes the key ‘reasoning_accuracy’
which maps to the calculated reasoning accuracy, represented as a float between 0 and 1.

Return type
dict

process(data_examples: ListData)→ None
Process a batch of data examples.

This method takes in a batch of data examples, each containing predicted pseudo-labels
(pred_pseudo_label), ground truth of reasoning results (Y), and input data (X). It evaluates the rea-
soning accuracy of each example by comparing the logical reasoning result (derived using the knowledge
base) of the predicted pseudo-labels against Y The result of this comparison (1 for correct reasoning, 0 for
incorrect) is appended to self.results.

Parameters
data_examples (ListData) – A batch of data examples.

class ablkit.data.evaluation.SymbolAccuracy(prefix: Optional[str] = None)
Bases: BaseMetric

A metrics class for evaluating symbol-level accuracy.

This class is designed to assess the accuracy of symbol prediction. Symbol accuracy is calculated by comparing
predicted presudo labels and their ground truth.

Parameters
prefix (str, optional) – The prefix that will be added to the metrics names to disambiguate
homonymous metrics of different tasks. Inherits from BaseMetric. Defaults to None.

compute_metrics()→ dict
Compute the symbol accuracy metrics from self.results. It calculates the percentage of correctly pre-
dicted pseudo-labels over all pseudo-labels.

Returns
A dictionary containing the computed metrics. It includes the key ‘character_accuracy’ which
maps to the calculated symbol-level accuracy, represented as a float between 0 and 1.

Return type
dict

process(data_examples: ListData)→ None
Processes a batch of data examples.

This method takes in a batch of data examples, each containing a list of predicted pseudo-labels
(pred_pseudo_label) and their ground truth (gt_pseudo_label). It calculates the accuracy by comparing
the two lists. Then, a tuple of correct symbol count and total symbol count is appended to self.results.

Parameters
data_examples (ListData) – A batch of data examples, each containing: -

48 Chapter 2. References

ABLkit

pred_pseudo_label: List of predicted pseudo-labels. - gt_pseudo_label: List of ground
truth pseudo-labels.

Raises
ValueError – If the lengths of predicted and ground truth symbol lists are not equal.

2.15 ablkit.learning

class ablkit.learning.ABLModel(base_model: Any)
Bases: object

Serialize data and provide a unified interface for different machine learning models.

Parameters
base_model (Machine Learning Model) – The machine learning base model used for train-
ing and prediction. This model should implement the fit and predict methods. It’s recom-
mended, but not required, for the model to also implement the predict_proba method for gen-
erating predictions on the probabilities.

load(*args, **kwargs)→ None
Load the model from a file.

This method delegates to the loadmethod of self.base_model. The arguments passed to this method should
match those expected by the load method of self.base_model.

predict(data_examples: ListData)→ Dict
Predict the labels and probabilities for the given data.

Parameters
data_examples (ListData) – A batch of data to predict on.

Returns
A dictionary containing the predicted labels and probabilities.

Return type
dict

save(*args, **kwargs)→ None
Save the model to a file.

This method delegates to the savemethod of self.base_model. The arguments passed to this method should
match those expected by the save method of self.base_model.

train(data_examples: ListData)→ float
Train the model on the given data.

Parameters
data_examples (ListData) – A batch of data to train on, which typically contains the data,
X, and the corresponding labels, abduced_idx.

Returns
The loss value of the trained model.

Return type
float

valid(data_examples: ListData)→ float
Validate the model on the given data.

2.15. ablkit.learning 49

ABLkit

Parameters
data_examples (ListData) – A batch of data to train on, which typically contains the data,
X, and the corresponding labels, abduced_idx.

Returns
The accuracy of the trained model.

Return type
float

class ablkit.learning.BasicNN(model: Module, loss_fn: Module, optimizer: Optimizer, scheduler:
Optional[Callable[[...], Any]] = None, device: Union[device, str] =
device(type='cpu'), batch_size: int = 32, num_epochs: int = 1, stop_loss:
Optional[float] = 0.0001, num_workers: int = 0, save_interval: Optional[int]
= None, save_dir: Optional[str] = None, train_transform:
Optional[Callable[[...], Any]] = None, test_transform:
Optional[Callable[[...], Any]] = None, collate_fn:
Optional[Callable[[List[Any]], Any]] = None)

Bases: object

Wrap NN models into the form of an sklearn estimator.

Parameters

• model (torch.nn.Module) – The PyTorch model to be trained or used for prediction.

• loss_fn (torch.nn.Module) – The loss function used for training.

• optimizer (torch.optim.Optimizer) – The optimizer used for training.

• scheduler (Callable[..., Any], optional) – The learning rate scheduler used for
training, which will be called at the end of each run of the fit method. It should implement
the step method. Defaults to None.

• device (Union[torch.device, str]) – The device on which the model will be trained
or used for prediction, Defaults to torch.device(“cpu”).

• batch_size (int, optional) – The batch size used for training. Defaults to 32.

• num_epochs (int, optional) – The number of epochs used for training. Defaults to 1.

• stop_loss (float, optional) – The loss value at which to stop training. Defaults to
0.0001.

• num_workers (int) – The number of workers used for loading data. Defaults to 0.

• save_interval (int, optional) – The model will be saved every save_interval
epoch during training. Defaults to None.

• save_dir (str, optional) – The directory in which to save the model during training.
Defaults to None.

• train_transform (Callable[..., Any], optional) – A function/transform that
takes an object and returns a transformed version used in the fit and train_epoch meth-
ods. Defaults to None.

• test_transform (Callable[..., Any], optional) – A function/transform that takes
an object and returns a transformed version in the predict, predict_proba and score
methods. Defaults to None.

• collate_fn (Callable[[List[T]], Any], optional) – The function used to collate
data. Defaults to None.

50 Chapter 2. References

ABLkit

fit(data_loader: Optional[DataLoader] = None, X: Optional[List[Any]] = None, y: Optional[List[int]] =
None)→ BasicNN
Train the model for self.num_epochs times or until the average loss on one epoch is less than self.stop_loss.
It supports training with either a DataLoader object (data_loader) or a pair of input data (X) and target
labels (y). If both data_loader and (X, y) are provided, the method will prioritize using the data_loader.

Parameters

• data_loader (DataLoader, optional) – The data loader used for training. Defaults
to None.

• X (List[Any], optional) – The input data. Defaults to None.

• y (List[int], optional) – The target data. Defaults to None.

Returns
The model itself after training.

Return type
BasicNN

load(load_path: str)→ None
Load the model and the optimizer.

Parameters
load_path (str) – The directory to load the model. Defaults to “”.

predict(data_loader: Optional[DataLoader] = None, X: Optional[List[Any]] = None)→ ndarray
Predict the class of the input data. This method supports prediction with either a DataLoader object
(data_loader) or a list of input data (X). If both data_loader and X are provided, the method will predict the
input data in data_loader instead of X.

Parameters

• data_loader (DataLoader, optional) – The data loader used for prediction. Defaults
to None.

• X (List[Any], optional) – The input data. Defaults to None.

Returns
The predicted class of the input data.

Return type
numpy.ndarray

predict_proba(data_loader: Optional[DataLoader] = None, X: Optional[List[Any]] = None)→ ndarray
Predict the probability of each class for the input data. This method supports prediction with either a
DataLoader object (data_loader) or a list of input data (X). If both data_loader and X are provided, the
method will predict the input data in data_loader instead of X.

Parameters

• data_loader (DataLoader, optional) – The data loader used for prediction. Defaults
to None.

• X (List[Any], optional) – The input data. Defaults to None.

Warning: This method calculates the probability by applying a softmax function to the output of
the neural network. If your neural network already includes a softmax function as its final activation,
applying softmax again here will lead to incorrect probabilities.

2.15. ablkit.learning 51

ABLkit

Returns
The predicted probability of each class for the input data.

Return type
numpy.ndarray

save(epoch_id: int = 0, save_path: Optional[str] = None)→ None
Save the model and the optimizer. User can either provide a save_path or specify the epoch_id at
which the model and optimizer is saved. if both save_path and epoch_id are provided, save_path
will be used. If only epoch_id is specified, model and optimizer will be saved to the path
f”model_checkpoint_epoch_{epoch_id}.pth” under self.save_dir. save_path and epoch_id can not be
None simultaneously.

Parameters

• epoch_id (int) – The epoch id.

• save_path (str, optional) – The path to save the model. Defaults to None.

score(data_loader: Optional[DataLoader] = None, X: Optional[List[Any]] = None, y: Optional[List[int]] =
None)→ float

Validate the model. It supports validation with either a DataLoader object (data_loader) or a pair of input
data (X) and ground truth labels (y). If both data_loader and (X, y) are provided, the method will prioritize
using the data_loader.

Parameters

• data_loader (DataLoader, optional) – The data loader used for scoring. Defaults to
None.

• X (List[Any], optional) – The input data. Defaults to None.

• y (List[int], optional) – The target data. Defaults to None.

Returns
The accuracy of the model.

Return type
float

train_epoch(data_loader: DataLoader)→ float
Train the model with an instance of DataLoader (data_loader) for one epoch.

Parameters
data_loader (DataLoader) – The data loader used for training.

Returns
The average loss on one epoch.

Return type
float

52 Chapter 2. References

ABLkit

2.15.1 torch_dataset

class ablkit.learning.torch_dataset.ClassificationDataset(X: List[Any], Y: List[int], transform:
Optional[Callable[[...], Any]] = None)

Bases: Dataset

Dataset used for classification task.

Parameters

• X (List[Any]) – The input data.

• Y (List[int]) – The target data.

• transform (Callable[..., Any], optional) – A function/transform that takes an ob-
ject and returns a transformed version. Defaults to None.

class ablkit.learning.torch_dataset.PredictionDataset(X: List[Any], transform:
Optional[Callable[[...], Any]] = None)

Bases: Dataset

Dataset used for prediction.

Parameters

• X (List[Any]) – The input data.

• transform (Callable[..., Any], optional) – A function/transform that takes an ob-
ject and returns a transformed version. Defaults to None.

class ablkit.learning.torch_dataset.RegressionDataset(X: List[Any], Y: List[Any])
Bases: Dataset

Dataset used for regression task.

Parameters

• X (List[Any]) – A list of objects representing the input data.

• Y (List[Any]) – A list of objects representing the output data.

2.16 ablkit.reasoning

class ablkit.reasoning.GroundKB(pseudo_label_list: List[Any], GKB_len_list: List[int], max_err: float =
1e-10)

Bases: KBBase

Knowledge base with a ground KB (GKB). Ground KB is a knowledge base prebuilt upon class initialization,
storing all potential candidates along with their respective reasoning result. Ground KB can accelerate abductive
reasoning in abduce_candidates.

Parameters

• pseudo_label_list (List[Any]) – Refer to class KBBase.

• GKB_len_list (List[int]) – List of possible lengths for pseudo-labels of an example.

• max_err (float, optional) – Refer to class KBBase.

2.16. ablkit.reasoning 53

ABLkit

Notes

Users can also inherit from this class to build their own knowledge base. Similar to KBBase, users are only
required to provide the pseudo_label_list and override the logic_forward function. Additionally, users
should provide the GKB_len_list. After that, other operations (e.g. auto-construction of GKB, and how to
perform abductive reasoning) will be automatically set up.

abduce_candidates(pseudo_label: List[Any], y: Any, x: List[Any], max_revision_num: int,
require_more_revision: int)→ List[List[Any]]

Perform abductive reasoning by directly retrieving compatible candidates from the prebuilt GKB. In this
way, the time-consuming exhaustive search can be avoided.

Parameters

• pseudo_label (List[Any]) – Pseudo-labels of an example (to be revised by abductive
reasoning).

• y (Any) – Ground truth of the reasoning result for the example.

• x (List[Any]) – The example (unused in GroundKB).

• max_revision_num (int) – The upper limit on the number of revised labels for each
example.

• require_more_revision (int) – Specifies additional number of revisions permitted be-
yond the minimum required.

Returns
A tuple of two elements. The first element is a list of candidate revisions, i.e. revised
pseudo-labels of the example. that are compatible with the knowledge base. The second
element is a list of reasoning results corresponding to each candidate, i.e., the outcome of the
logic_forward function.

Return type
Tuple[List[List[Any]], List[Any]]

class ablkit.reasoning.KBBase(pseudo_label_list: ~typing.List[~typing.Any], max_err: float = 1e-10,
use_cache: bool = True, key_func: ~typing.Callable = <function
to_hashable>, cache_size: int = 4096)

Bases: ABC

Base class for knowledge base.

Parameters

• pseudo_label_list (List[Any]) – List of possible pseudo-labels. It’s recommended to
arrange the pseudo-labels in this list so that each aligns with its corresponding index in the
base model: the first with the 0th index, the second with the 1st, and so forth.

• max_err (float, optional) – The upper tolerance limit when comparing the similarity
between the reasoning result of pseudo-labels and the ground truth. This is only applicable
when the reasoning result is of a numerical type. This is particularly relevant for regression
problems where exact matches might not be feasible. Defaults to 1e-10.

• use_cache (bool, optional) – Whether to use abl_cache for previously abduced candi-
dates to speed up subsequent operations. Defaults to True.

• key_func (Callable, optional) – A function employed for hashing in abl_cache. This
is only operational when use_cache is set to True. Defaults to to_hashable.

• cache_size (int, optional) – The cache size in abl_cache. This is only operational
when use_cache is set to True. Defaults to 4096.

54 Chapter 2. References

ABLkit

Notes

Users should derive from this base class to build their own knowledge base. For the user-build KB (a derived
subclass), it’s only required for the user to provide the pseudo_label_list and override the logic_forward
function (specifying how to perform logical reasoning). After that, other operations (e.g. how to perform abduc-
tive reasoning) will be automatically set up.

abduce_candidates(pseudo_label: List[Any], y: Any, x: List[Any], max_revision_num: int,
require_more_revision: int)→ List[List[Any]]

Perform abductive reasoning to get a candidate compatible with the knowledge base.

Parameters

• pseudo_label (List[Any]) – Pseudo-labels of an example (to be revised by abductive
reasoning).

• y (Any) – Ground truth of the reasoning result for the example.

• x (List[Any]) – The example. If the information from the example is not required in the
reasoning process, then this parameter will not have any effect.

• max_revision_num (int) – The upper limit on the number of revised labels for each
example.

• require_more_revision (int) – Specifies additional number of revisions permitted be-
yond the minimum required.

Returns
A tuple of two elements. The first element is a list of candidate revisions, i.e. revised
pseudo-labels of the example. that are compatible with the knowledge base. The second
element is a list of reasoning results corresponding to each candidate, i.e., the outcome of the
logic_forward function.

Return type
Tuple[List[List[Any]], List[Any]]

abstract logic_forward(pseudo_label: List[Any], x: Optional[List[Any]] = None)→ Any
How to perform (deductive) logical reasoning, i.e. matching an example’s pseudo-labels to its reasoning
result. Users are required to provide this.

Parameters

• pseudo_label (List[Any]) – Pseudo-labels of an example.

• x (List[Any], optional) – The example. If deductive logical reasoning does not re-
quire any information from the example, the overridden function provided by the user can
omit this parameter.

Returns
The reasoning result.

Return type
Any

revise_at_idx(pseudo_label: List[Any], y: Any, x: List[Any], revision_idx: List[int])→ List[List[Any]]
Revise the pseudo-labels at specified index positions.

Parameters

• pseudo_label (List[Any]) – Pseudo-labels of an example (to be revised).

• y (Any) – Ground truth of the reasoning result for the example.

2.16. ablkit.reasoning 55

ABLkit

• x (List[Any]) – The example. If the information from the example is not required in the
reasoning process, then this parameter will not have any effect.

• revision_idx (List[int]) – A list specifying indices of where revisions should be
made to the pseudo-labels.

Returns
A tuple of two elements. The first element is a list of candidate revisions, i.e. revised
pseudo-labels of the example. that are compatible with the knowledge base. The second
element is a list of reasoning results corresponding to each candidate, i.e., the outcome of the
logic_forward function.

Return type
Tuple[List[List[Any]], List[Any]]

class ablkit.reasoning.PrologKB(pseudo_label_list: List[Any], pl_file: str)
Bases: KBBase

Knowledge base provided by a Prolog (.pl) file.

Parameters

• pseudo_label_list (List[Any]) – Refer to class KBBase.

• pl_file (str) – Prolog file containing the KB.

Notes

Users can instantiate this class to build their own knowledge base. During the instantiation, users are only
required to provide the pseudo_label_list and pl_file. To use the default logic forward and abductive
reasoning methods in this class, in the Prolog (.pl) file, there needs to be a rule which is strictly formatted as
logic_forward(Pseudo_labels, Res)., e.g., logic_forward([A,B], C) :- C is A+B. For specifics,
refer to the logic_forward and get_query_string functions in this class. Users are also welcome to override
related functions for more flexible support.

get_query_string(pseudo_label: List[Any], y: Any, x: List[Any], revision_idx: List[int])→ str
Get the query to be used for consulting Prolog. This is a default function for demo, users would
override this function to adapt to their own Prolog file. In this demo function, return query
logic_forward([kept_labels, Revise_labels], Res)..

Parameters

• pseudo_label (List[Any]) – Pseudo-labels of an example (to be revised by abductive
reasoning).

• y (Any) – Ground truth of the reasoning result for the example.

• x (List[Any]) – The corresponding input example. If the information from the input is
not required in the reasoning process, then this parameter will not have any effect.

• revision_idx (List[int]) – A list specifying indices of where revisions should be
made to the pseudo-labels.

Returns
A string of the query.

Return type
str

56 Chapter 2. References

ABLkit

logic_forward(pseudo_label: List[Any], x: Optional[List[Any]] = None)→ Any
Consult prolog with the query logic_forward(pseudo_labels, Res)., and set the returned Res as
the reasoning results. To use this default function, there must be a logic_forward method in the pl file to
perform reasoning. Otherwise, users would override this function.

Parameters

• pseudo_label (List[Any]) – Pseudo-labels of an example.

• x (List[Any]) – The corresponding input example. If the information from the input is
not required in the reasoning process, then this parameter will not have any effect.

revise_at_idx(pseudo_label: List[Any], y: Any, x: List[Any], revision_idx: List[int])→ List[List[Any]]
Revise the pseudo-labels at specified index positions by querying Prolog.

Parameters

• pseudo_label (List[Any]) – Pseudo-labels of an example (to be revised).

• y (Any) – Ground truth of the reasoning result for the example.

• x (List[Any]) – The corresponding input example. If the information from the input is
not required in the reasoning process, then this parameter will not have any effect.

• revision_idx (List[int]) – A list specifying indices of where revisions should be
made to the pseudo-labels.

Returns
A tuple of two elements. The first element is a list of candidate revisions, i.e. revised
pseudo-labels of the example. that are compatible with the knowledge base. The second
element is a list of reasoning results corresponding to each candidate, i.e., the outcome of the
logic_forward function.

Return type
Tuple[List[List[Any]], List[Any]]

class ablkit.reasoning.Reasoner(kb: KBBase, dist_func: Union[str, Callable] = 'confidence', idx_to_label:
Optional[dict] = None, max_revision: Union[int, float] = -1,
require_more_revision: int = 0, use_zoopt: bool = False)

Bases: object

Reasoner for minimizing the inconsistency between the knowledge base and learning models.

Parameters

• kb (class KBBase) – The knowledge base to be used for reasoning.

• dist_func (Union[str, Callable], optional) – The distance function used to de-
termine the cost list between each candidate and the given prediction. The cost is
also referred to as a consistency measure, wherein the candidate with lowest cost is se-
lected as the final abduced label. It can be either a string representing a predefined
distance function or a callable function. The available predefined distance functions:
‘hamming’ | ‘confidence’ | ‘avg_confidence’. ‘hamming’ directly calculates the Ham-
ming distance between the predicted pseudo-label in the data example and each can-
didate. ‘confidence’ and ‘avg_confidence’ calculates the confidence distance between
the predicted probabilities in the data example and each candidate, where the confi-
dence distance is defined as 1 - the product of prediction probabilities in ‘confidence’
and 1 - the average of prediction probabilities in ‘avg_confidence’. Alternatively, the
callable function should have the signature dist_func(data_example, candidates,
candidate_idxs, reasoning_results) and must return a cost list. Each element in

2.16. ablkit.reasoning 57

ABLkit

this cost list should be a numerical value representing the cost for each candidate, and the
list should have the same length as candidates. Defaults to ‘confidence’.

• idx_to_label (dict, optional) – A mapping from index in the base model to label. If
not provided, a default order-based index to label mapping is created. Defaults to None.

• max_revision (Union[int, float], optional) – The upper limit on the number of
revisions for each data example when performing abductive reasoning. If float, denotes the
fraction of the total length that can be revised. A value of -1 implies no restriction on the
number of revisions. Defaults to -1.

• require_more_revision (int, optional) – Specifies additional number of revisions
permitted beyond the minimum required when performing abductive reasoning. Defaults to
0.

• use_zoopt (bool, optional) – Whether to use ZOOpt library during abductive reason-
ing. Defaults to False.

abduce(data_example: ListData)→ List[Any]
Perform abductive reasoning on the given data example.

Parameters
data_example (ListData) – Data example.

Returns
A revised pseudo-labels of the example through abductive reasoning, which is compatible
with the knowledge base.

Return type
List[Any]

batch_abduce(data_examples: ListData)→ List[List[Any]]
Perform abductive reasoning on the given prediction data examples. For detailed information, refer to
abduce.

zoopt_budget(symbol_num: int)→ int
Set the budget for ZOOpt optimization. The budget can be dynamic relying on the number of symbols
considered, e.g., the default implementation shown below. Alternatively, it can be a fixed value, such as
simply setting it to 100.

Parameters
symbol_num (int) – The number of symbols to be considered in the ZOOpt optimization
process.

Returns
The budget for ZOOpt optimization.

Return type
int

zoopt_score(symbol_num: int, data_example: ListData, sol: Solution)→ int
Set the score for a solution. A lower score suggests that ZOOpt library has a higher preference for this
solution.

Parameters

• symbol_num (int) – Number of total symbols.

• data_example (ListData) – Data example.

• sol (Solution) – The solution for ZOOpt library.

58 Chapter 2. References

ABLkit

Returns
The score for the solution.

Return type
int

2.17 ablkit.bridge

class ablkit.bridge.BaseBridge(model: ABLModel, reasoner: Reasoner)
Bases: object

A base class for bridging learning and reasoning parts.

This class provides necessary methods that need to be overridden in subclasses to construct a typical pipeline of
Abductive Learning (corresponding to train), which involves the following four methods:

• predict: Predict class indices on the given data examples.

• idx_to_pseudo_label: Map indices into pseudo-labels.

• abduce_pseudo_label: Revise pseudo-labels based on abdutive reasoning.

• pseudo_label_to_idx: Map revised pseudo-labels back into indices.

Parameters

• model (ABLModel) – The machine learning model wrapped in ABLModel, which is mainly
used for prediction and model training.

• reasoner (Reasoner) – The reasoning part wrapped in Reasoner, which is used for
pseudo-label revision.

abstract abduce_pseudo_label(data_examples: ListData)→ List[List[Any]]
Placeholder for revising pseudo-labels based on abdutive reasoning.

filter_pseudo_label(data_examples: ListData)→ List[List[Any]]
Default filter function for pseudo-label.

abstract idx_to_pseudo_label(data_examples: ListData)→ List[List[Any]]
Placeholder for mapping indices to pseudo-labels.

abstract predict(data_examples: ListData)→ Tuple[List[List[Any]], List[List[Any]]]
Placeholder for predicting class indices from input.

abstract pseudo_label_to_idx(data_examples: ListData)→ List[List[Any]]
Placeholder for mapping pseudo-labels to indices.

abstract test(test_data: Union[ListData, Tuple[List[List[Any]], Optional[List[List[Any]]], List[Any]]])
→ None

Placeholder for model validation.

abstract train(train_data: Union[ListData, Tuple[List[List[Any]], Optional[List[List[Any]]],
List[Any]]])

Placeholder for training loop of ABductive Learning.

abstract valid(val_data: Union[ListData, Tuple[List[List[Any]], Optional[List[List[Any]]], List[Any]]])
→ None

Placeholder for model test.

2.17. ablkit.bridge 59

ABLkit

class ablkit.bridge.SimpleBridge(model: ABLModel, reasoner: Reasoner, metric_list: List[BaseMetric])
Bases: BaseBridge

A basic implementation for bridging machine learning and reasoning parts.

This class implements the typical pipeline of Abductive Learning, which involves the following five steps:

• Predict class probabilities and indices for the given data examples.

• Map indices into pseudo-labels.

• Revise pseudo-labels based on abdutive reasoning.

• Map the revised pseudo-labels to indices.

• Train the model.

Parameters

• model (ABLModel) – The machine learning model wrapped in ABLModel, which is mainly
used for prediction and model training.

• reasoner (Reasoner) – The reasoning part wrapped in Reasoner, which is used for
pseudo-label revision.

• metric_list (List[BaseMetric]) – A list of metrics used for evaluating the model’s
performance.

abduce_pseudo_label(data_examples: ListData)→ List[List[Any]]
Revise predicted pseudo-labels of the given data examples using abduction.

Parameters
data_examples (ListData) – Data examples containing predicted pseudo-labels.

Returns
A list of abduced pseudo-labels for the given data examples.

Return type
List[List[Any]]

concat_data_examples(unlabel_data_examples: ListData, label_data_examples: Optional[ListData])→
ListData

Concatenate unlabeled and labeled data examples. abduced_pseudo_label of unlabeled data examples
and gt_pseudo_label of labeled data examples will be used to train the model.

Parameters

• unlabel_data_examples (ListData) – Unlabeled data examples to concatenate.

• label_data_examples (ListData, optional) – Labeled data examples to concate-
nate, if available.

Returns
Concatenated data examples.

Return type
ListData

data_preprocess(prefix: str, data: Union[ListData, Tuple[List[List[Any]], Optional[List[List[Any]]],
List[Any]]])→ ListData

Transform data in the form of (X, gt_pseudo_label, Y) into ListData.

Parameters

60 Chapter 2. References

ABLkit

• prefix (str) – A prefix indicating the type of data processing (e.g., ‘train’, ‘test’).

• data (Union[ListData, Tuple[List[List[Any]],
Optional[List[List[Any]]], List[Any]]]) – Data to be preprocessed. Can
be ListData or a tuple of lists.

Returns
The preprocessed ListData object.

Return type
ListData

idx_to_pseudo_label(data_examples: ListData)→ List[List[Any]]
Map indices of data examples into pseudo-labels.

Parameters
data_examples (ListData) – Data examples containing the indices.

Returns
A list of pseudo-labels converted from indices.

Return type
List[List[Any]]

predict(data_examples: ListData)→ Tuple[List[ndarray], List[ndarray]]
Predict class indices and probabilities (if predict_proba is implemented in self.model.base_model)
on the given data examples.

Parameters
data_examples (ListData) – Data examples on which predictions are to be made.

Returns
A tuple containing lists of predicted indices and probabilities.

Return type
Tuple[List[ndarray], List[ndarray]]

pseudo_label_to_idx(data_examples: ListData)→ List[List[Any]]
Map pseudo-labels of data examples into indices.

Parameters
data_examples (ListData) – Data examples containing pseudo-labels.

Returns
A list of indices converted from pseudo-labels.

Return type
List[List[Any]]

test(test_data: Union[ListData, Tuple[List[List[Any]], Optional[List[List[Any]]], Optional[List[Any]]]])→
None

Test the model with the given test data.

Parameters
test_data (Union[ListData, Tuple[List[List[Any]],
Optional[List[List[Any]]], Optional[List[Any]]]]) – Test data should be in
the form of (X, gt_pseudo_label, Y) or a ListData object with X, gt_pseudo_label
and Y attributes. Both gt_pseudo_label and Y can be either None or not, which depends
on the evaluation metircs in self.metric_list.

2.17. ablkit.bridge 61

ABLkit

train(train_data: Union[ListData, Tuple[List[List[Any]], Optional[List[List[Any]]], List[Any]]],
label_data: Optional[Union[ListData, Tuple[List[List[Any]], List[List[Any]], List[Any]]]] = None,
val_data: Optional[Union[ListData, Tuple[List[List[Any]], Optional[List[List[Any]]],
Optional[List[Any]]]]] = None, loops: int = 50, segment_size: Union[int, float] = 1.0, eval_interval:
int = 1, save_interval: Optional[int] = None, save_dir: Optional[str] = None)

A typical training pipeline of Abuductive Learning.

Parameters

• train_data (Union[ListData, Tuple[List[List[Any]],
Optional[List[List[Any]]], List[Any]]]) – Training data should be in the
form of (X, gt_pseudo_label, Y) or a ListData object with X, gt_pseudo_label
and Y attributes. - X is a list of sublists representing the input data. - gt_pseudo_label is
only used to evaluate the performance of the ABLModel but not to train. gt_pseudo_label
can be None. - Y is a list representing the ground truth reasoning result for each sublist in
X.

• label_data (Union[ListData, Tuple[List[List[Any]], List[List[Any]],
List[Any]]], optional) – Labeled data should be in the same format as train_data.
The only difference is that the gt_pseudo_label in label_data should not be None
and will be utilized to train the model. Defaults to None.

• val_data (Union[ListData, Tuple[List[List[Any]],
Optional[List[List[Any]]], Optional[List[Any]]]], optional) – Val-
idation data should be in the same format as train_data. Both gt_pseudo_label
and Y can be either None or not, which depends on the evaluation metircs in self.
metric_list. If val_data is None, train_data will be used to validate the model
during training time. Defaults to None.

• loops (int) – Learning part and Reasoning part will be iteratively optimized for loops
times. Defaults to 50.

• segment_size (Union[int, float]) – Data will be split into segments of this size and
data in each segment will be used together to train the model. Defaults to 1.0.

• eval_interval (int) – The model will be evaluated every eval_interval loop during
training, Defaults to 1.

• save_interval (int, optional) – The model will be saved every eval_interval
loop during training. Defaults to None.

• save_dir (str, optional) – Directory to save the model. Defaults to None.

valid(val_data: Union[ListData, Tuple[List[List[Any]], Optional[List[List[Any]]], Optional[List[Any]]]])
→ None

Validate the model with the given validation data.

Parameters
val_data (Union[ListData, Tuple[List[List[Any]],
Optional[List[List[Any]]], Optional[List[Any]]]]) – Validation data
should be in the form of (X, gt_pseudo_label, Y) or a ListData object with X,
gt_pseudo_label and Y attributes. Both gt_pseudo_label and Y can be either None or
not, which depends on the evaluation metircs in self.metric_list.

62 Chapter 2. References

ABLkit

2.18 ablkit.utils

class ablkit.utils.ABLLogger(name: str, logger_name='abl', log_file: Optional[str] = None, log_level:
Union[int, str] = 'INFO', file_mode: str = 'w')

Bases: Logger, ManagerMixin

Formatted logger used to record messages with different log levels and features.

ABLLogger provides a formatted logger that can log messages with different log levels. It allows the creation of
logger instances in a similar manner to ManagerMixin. The logger has features like distributed log storage and
colored terminal output for different log levels.

Parameters

• name (str) – Global instance name.

• logger_name (str, optional) – name attribute of logging.Logger instance. Defaults
to ‘abl’.

• log_file (str, optional) – The log filename. If specified, a FileHandler will be
added to the logger. Defaults to None.

• log_level (Union[int, str], optional) – The log level of the handler. Defaults to
‘INFO’. If log level is ‘DEBUG’, distributed logs will be saved during distributed training.

• file_mode (str, optional) – The file mode used to open log file. Defaults to ‘w’.

Notes

• The name of the logger and the instance_name of ABLLogger could be different. ABLLogger instances
are retrieved using ABLLogger.get_instance, not logging.getLogger. This ensures ABLLogger is
not influenced by third-party logging configurations.

• Unlike logging.Logger, ABLLogger will not log warning or error messages without Handler.

Examples

>>> logger = ABLLogger.get_instance(name='ABLLogger', logger_name='Logger')
>>> # Although logger has a name attribute like ``logging.Logger``
>>> # We cannot get logger instance by ``logging.getLogger``.
>>> assert logger.name == 'Logger'
>>> assert logger.instance_name == 'ABLLogger'
>>> assert id(logger) != id(logging.getLogger('Logger'))
>>> # Get logger that does not store logs.
>>> logger1 = ABLLogger.get_instance('logger1')
>>> # Get logger only save rank0 logs.
>>> logger2 = ABLLogger.get_instance('logger2', log_file='out.log')
>>> # Get logger only save multiple ranks logs.
>>> logger3 = ABLLogger.get_instance('logger3', log_file='out.log',␣
→˓distributed=True)

callHandlers(record: LogRecord)→ None
Pass a record to all relevant handlers.

Override the callHandlers method in logging.Logger to avoid multiple warning messages in DDP
mode. This method loops through all handlers of the logger instance and its parents in the logger hierarchy.

2.18. ablkit.utils 63

ABLkit

Parameters
record (LogRecord) – A LogRecord instance containing the logged message.

classmethod get_current_instance()→ ABLLogger
Get the latest created ABLLogger instance.

Returns
The latest created ABLLogger instance. If no instance has been created, returns a logger with
the instance name “abl”.

Return type
ABLLogger

property log_dir

Get the directory where the log is stored.

Returns
Directory where the log is stored.

Return type
str

property log_file

Get the file path of the log.

Returns
Path of the log.

Return type
str

setLevel(level)
Set the logging level of this logger.

Override the setLevel method to clear caches of all ABLLogger instances managed by ManagerMixin.
The level must be an int or a str.

Parameters
level (Union[int, str]) – The logging level to set.

class ablkit.utils.Cache(func: Callable[[K], T])
Bases: Generic[K, T]

A generic caching mechanism that stores the results of a function call and retrieves them to avoid repeated
calculations.

This class implements a dictionary-based cache with a circular doubly linked list to manage the cache entries
efficiently. It is designed to be generic, allowing for caching of any callable function.

Parameters
func (Callable[[K], T]) – The function to be cached. This function takes an argument of
type K and returns a value of type T.

clear_cache()

Invalidate the entire cache.

get_from_dict(obj, *args)→ T
Retrieve a value from the cache or compute it using self.func.

Parameters

• obj (Any) – The object to which the cached method/function belongs.

64 Chapter 2. References

ABLkit

• *args (Any) – Arguments used in key generation for cache retrieval or function computa-
tion.

Returns
The value from the cache or computed by the function.

Return type
T

init_cache(obj)
Initialize the cache settings.

Parameters
obj (Any) – The object containing settings for cache initialization.

ablkit.utils.abl_cache()

Decorator to enable caching for a function.

Returns
The wrapped function with caching capability.

Return type
Callable

ablkit.utils.avg_confidence_dist(pred_prob: ndarray, candidates_idxs: List[List[Any]])→ ndarray
Compute the average confidence distance between prediction probabilities and candidates, where the confidence
distance is defined as 1 - the average of prediction probabilities.

Parameters

• pred_prob (np.ndarray) – Prediction probability distributions, each element is an array
representing the probability distribution of a particular prediction.

• candidates_idxs (List[List[Any]]) – Multiple possible candidates’ indices.

Returns
Confidence distances computed for each candidate.

Return type
np.ndarray

ablkit.utils.confidence_dist(pred_prob: ndarray, candidates_idxs: List[List[Any]])→ ndarray
Compute the confidence distance between prediction probabilities and candidates, where the confidence distance
is defined as 1 - the product of prediction probabilities.

Parameters

• pred_prob (np.ndarray) – Prediction probability distributions, each element is an array
representing the probability distribution of a particular prediction.

• candidates_idxs (List[List[Any]]) – Multiple possible candidates’ indices.

Returns
Confidence distances computed for each candidate.

Return type
np.ndarray

ablkit.utils.flatten(nested_list: List[Union[Any, List[Any], Tuple[Any, ...]]]) → List[Any]
Flattens a nested list at the first level.

2.18. ablkit.utils 65

ABLkit

Parameters
nested_list (List[Union[Any, List[Any], Tuple[Any, ...]]]) – A list which might
contain sublists or tuples at the first level.

Returns
A flattened version of the input list, where only the first level of sublists and tuples are reduced.

Return type
List[Any]

ablkit.utils.hamming_dist(pred_pseudo_label: List[Any], candidates: List[List[Any]])→ ndarray
Compute the Hamming distance between two arrays.

Parameters

• pred_pseudo_label (List[Any]) – Pseudo-labels of an example.

• candidates (List[List[Any]]) – Multiple possible candidates.

Returns
Hamming distances computed for each candidate.

Return type
np.ndarray

ablkit.utils.print_log(msg, logger: Optional[Union[Logger, str]] = None, level: Optional[int] = 20)→
None

Print a log message using the specified logger or a default method.

This function logs a message with a given logger, if provided, or prints it using the standard print function. It
supports special logger types such as ‘silent’ and ‘current’.

Parameters

• msg (str) – The message to be logged.

• logger (Union[Logger, str], optional) – The logger to use for logging the message.
It can be a logging.Logger instance, a string specifying the logger name, ‘silent’, ‘current’,
or None. If None, the print method is used. - ‘silent’: No message will be printed. -
‘current’: Use the latest created logger to log the message. - other str: The instance name of
the logger. A ValueError is raised if the logger has not been created. - None: The print()
method is used for logging.

• level (int, optional) – The logging level. This is only applicable when logger is a
Logger object, ‘current’, or a named logger instance. The default is logging.INFO.

ablkit.utils.reform_list(flattened_list: List[Any], structured_list: List[Union[Any, List[Any], Tuple[Any,
...]]]) → List[List[Any]]

Reform the list based on the structure of structured_list.

Parameters

• flattened_list (List[Any]) – A flattened list of elements.

• structured_list (List[Union[Any, List[Any], Tuple[Any, ...]]]) – A list
that reflects the desired structure, which may contain sublists or tuples.

Returns
A reformed list that mimics the structure of structured_list.

Return type
List[List[Any]]

66 Chapter 2. References

ABLkit

ablkit.utils.tab_data_to_tuple(X: Union[List[Any], Any], y: Union[List[Any], Any], reasoning_result:
Optional[Any] = 0)→ Tuple[List[List[Any]], List[List[Any]], List[Any]]

Convert a tabular data to a tuple by adding a dimension to each element of X and y. The tuple contains three
elements: data, label, and reasoning result. If X is None, return None.

Parameters

• X (Union[List[Any], Any]) – The data.

• y (Union[List[Any], Any]) – The label.

• reasoning_result (Any, optional) – The reasoning result. Defaults to 0.

Returns
A tuple of (data, label, reasoning_result).

Return type
Tuple[List[List[Any]], List[List[Any]], List[Any]]

ablkit.utils.to_hashable(x: Union[List[Any], Any])→ Union[Tuple[Any, ...], Any]
Convert a nested list to a nested tuple so it is hashable.

Parameters
x (Union[List[Any], Any]) – A potentially nested list to convert to a tuple.

Returns
The input converted to a tuple if it was a list, otherwise the original input.

Return type
Union[Tuple[Any, . . .], Any]

2.19 References

Zhi-Hua Zhou. Abductive learning: Towards bridging machine learning and logical reasoning. Science China Infor-
mation Sciences, 2019, 62: 076101.

Zhi-Hua Zhou and Yu-Xuan Huang. Abductive learning. In P. Hitzler and M. K. Sarker eds., Neuro-Symbolic Artifi-
cial Intelligence: The State of the Art, IOP Press, Amsterdam, 2022, p.353-379

@article{zhou2019abductive,
title = {Abductive learning: towards bridging machine learning and logical␣

→˓reasoning},
author = {Zhou, Zhi-Hua},
journal = {Science China Information Sciences},
volume = {62},
number = {7},
pages = {76101},
year = {2019}

}

@incollection{zhou2022abductive,
title = {Abductive Learning},
author = {Zhou, Zhi-Hua and Huang, Yu-Xuan},
booktitle = {Neuro-Symbolic Artificial Intelligence: The State of the Art},
editor = {Pascal Hitzler and Md. Kamruzzaman Sarker},
publisher = {{IOS} Press},
pages = {353--369},

(continues on next page)

2.19. References 67

http://scis.scichina.com/en/2019/076101.pdf
https://www.lamda.nju.edu.cn/publication/chap_ABL.pdf

ABLkit

(continued from previous page)

address = {Amsterdam},
year = {2022}

}

68 Chapter 2. References

PYTHON MODULE INDEX

a
ablkit.bridge, 59
ablkit.data.evaluation, 47
ablkit.learning.torch_dataset, 53
ablkit.reasoning, 53
ablkit.utils, 63

69

ABLkit

70 Python Module Index

INDEX

A
abduce() (ablkit.reasoning.Reasoner method), 58
abduce_candidates() (ablkit.reasoning.GroundKB

method), 54
abduce_candidates() (ablkit.reasoning.KBBase

method), 55
abduce_pseudo_label() (ablkit.bridge.BaseBridge

method), 59
abduce_pseudo_label() (ablkit.bridge.SimpleBridge

method), 60
abl_cache() (in module ablkit.utils), 65
ablkit.bridge

module, 59
ablkit.data.evaluation

module, 47
ablkit.learning.torch_dataset

module, 53
ablkit.reasoning

module, 53
ablkit.utils

module, 63
ABLLogger (class in ablkit.utils), 63
ABLModel (class in ablkit.learning), 49
avg_confidence_dist() (in module ablkit.utils), 65

B
BaseBridge (class in ablkit.bridge), 59
BaseMetric (class in ablkit.data.evaluation), 47
BasicNN (class in ablkit.learning), 50
batch_abduce() (ablkit.reasoning.Reasoner method),

58

C
Cache (class in ablkit.utils), 64
callHandlers() (ablkit.utils.ABLLogger method), 63
ClassificationDataset (class in

ablkit.learning.torch_dataset), 53
clear_cache() (ablkit.utils.Cache method), 64
compute_metrics() (ablkit.data.evaluation.BaseMetric

method), 47
compute_metrics() (ablkit.data.evaluation.ReasoningMetric

method), 48

compute_metrics() (ablkit.data.evaluation.SymbolAccuracy
method), 48

concat_data_examples() (ablkit.bridge.SimpleBridge
method), 60

confidence_dist() (in module ablkit.utils), 65

D
data_preprocess() (ablkit.bridge.SimpleBridge

method), 60

E
elements_num() (ablkit.data.structures.ListData

method), 46
evaluate() (ablkit.data.evaluation.BaseMetric

method), 47

F
filter_pseudo_label() (ablkit.bridge.BaseBridge

method), 59
fit() (ablkit.learning.BasicNN method), 50
flatten() (ablkit.data.structures.ListData method), 46
flatten() (in module ablkit.utils), 65

G
get_current_instance() (ablkit.utils.ABLLogger

class method), 64
get_from_dict() (ablkit.utils.Cache method), 64
get_query_string() (ablkit.reasoning.PrologKB

method), 56
GroundKB (class in ablkit.reasoning), 53

H
hamming_dist() (in module ablkit.utils), 66

I
idx_to_pseudo_label() (ablkit.bridge.BaseBridge

method), 59
idx_to_pseudo_label() (ablkit.bridge.SimpleBridge

method), 61
init_cache() (ablkit.utils.Cache method), 65

71

ABLkit

K
KBBase (class in ablkit.reasoning), 54

L
ListData (class in ablkit.data.structures), 45
load() (ablkit.learning.ABLModel method), 49
load() (ablkit.learning.BasicNN method), 51
log_dir (ablkit.utils.ABLLogger property), 64
log_file (ablkit.utils.ABLLogger property), 64
logic_forward() (ablkit.reasoning.KBBase method),

55
logic_forward() (ablkit.reasoning.PrologKB method),

56

M
module

ablkit.bridge, 59
ablkit.data.evaluation, 47
ablkit.learning.torch_dataset, 53
ablkit.reasoning, 53
ablkit.utils, 63

P
predict() (ablkit.bridge.BaseBridge method), 59
predict() (ablkit.bridge.SimpleBridge method), 61
predict() (ablkit.learning.ABLModel method), 49
predict() (ablkit.learning.BasicNN method), 51
predict_proba() (ablkit.learning.BasicNN method),

51
PredictionDataset (class in

ablkit.learning.torch_dataset), 53
print_log() (in module ablkit.utils), 66
process() (ablkit.data.evaluation.BaseMetric method),

47
process() (ablkit.data.evaluation.ReasoningMetric

method), 48
process() (ablkit.data.evaluation.SymbolAccuracy

method), 48
PrologKB (class in ablkit.reasoning), 56
pseudo_label_to_idx() (ablkit.bridge.BaseBridge

method), 59
pseudo_label_to_idx() (ablkit.bridge.SimpleBridge

method), 61

R
Reasoner (class in ablkit.reasoning), 57
ReasoningMetric (class in ablkit.data.evaluation), 47
reform_list() (in module ablkit.utils), 66
RegressionDataset (class in

ablkit.learning.torch_dataset), 53
revise_at_idx() (ablkit.reasoning.KBBase method),

55
revise_at_idx() (ablkit.reasoning.PrologKB method),

57

S
save() (ablkit.learning.ABLModel method), 49
save() (ablkit.learning.BasicNN method), 52
score() (ablkit.learning.BasicNN method), 52
setLevel() (ablkit.utils.ABLLogger method), 64
SimpleBridge (class in ablkit.bridge), 59
SymbolAccuracy (class in ablkit.data.evaluation), 48

T
tab_data_to_tuple() (in module ablkit.utils), 66
test() (ablkit.bridge.BaseBridge method), 59
test() (ablkit.bridge.SimpleBridge method), 61
to_hashable() (in module ablkit.utils), 67
to_tuple() (ablkit.data.structures.ListData method), 46
train() (ablkit.bridge.BaseBridge method), 59
train() (ablkit.bridge.SimpleBridge method), 61
train() (ablkit.learning.ABLModel method), 49
train_epoch() (ablkit.learning.BasicNN method), 52

V
valid() (ablkit.bridge.BaseBridge method), 59
valid() (ablkit.bridge.SimpleBridge method), 62
valid() (ablkit.learning.ABLModel method), 49

Z
zoopt_budget() (ablkit.reasoning.Reasoner method),

58
zoopt_score() (ablkit.reasoning.Reasoner method), 58

72 Index

	Installation
	Install from PyPI
	Install from Source
	(Optional) Install SWI-Prolog

	References
	Abductive Learning
	Installation
	Install from PyPI
	Install from Source
	(Optional) Install SWI-Prolog

	Learn the Basics
	Modules in ABLkit
	Use ABLkit Step by Step

	Quick Start
	Working with Data
	Building the Learning Part
	Building the Reasoning Part
	Building Evaluation Metrics
	Bridging Learning and Reasoning

	Dataset & Data Structure
	Dataset
	Data Structure

	Learning Part
	Building a base model
	BasicNN

	Instantiating an ABLModel

	Reasoning part
	Building a knowledge base
	Building a knowledge base from KBBase
	MNIST Addition example
	Other optional parameters

	Building a knowledge base from Prolog file
	MNIST Addition example (cont.)

	Building a knowledge base with GKB from GroundKB
	MNIST Addition example (cont.)

	Performing abductive reasoning in the knowledge base
	MNIST Addition example (cont.)

	Creating a reasoner
	MNIST Addition example (cont.)

	Evaluation Metrics
	Bridge
	MNIST Addition
	Working with Data
	Building the Learning Part
	Building the Reasoning Part
	Building Evaluation Metrics
	Bridging Learning and Reasoning
	Environment
	Performance

	Handwritten Formula (HWF)
	Working with Data
	Building the Learning Part
	Building the Reasoning Part
	Building Evaluation Metrics
	Bridging Learning and Reasoning
	Environment
	Performance

	Handwritten Equation Decipherment (HED)
	Working with Data
	Building the Learning Part
	Building the Reasoning Part
	Building Evaluation Metrics
	Bridging Learning and Reasoning

	Zoo
	Working with Data
	Building the Learning Part
	Building the Reasoning Part
	Building Evaluation Metrics
	Bridging Learning and Reasoning

	ablkit.data
	structures
	evaluation

	ablkit.learning
	torch_dataset

	ablkit.reasoning
	ablkit.bridge
	ablkit.utils
	References

	Python Module Index
	Index

